Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2014 American Geophysical Union. All Rights Reserved.
Collection
Abstract
The Tarim Craton, located in the center of Asia, was involved in the assembly and breakup of the Rodinia supercontinent during the Neoproterozoic and the subduction-accretion of the Central Asian Orogenic Belt (CAOB) during the Paleozoic. However, its tectonic evolution during these events is controversial, and a link between the Neoproterozoic and Paleozoic tectonic processes is missing. Here we present zircon U-Pb ages, Hf isotopes, and whole-rock geochemical data for the extensive granitoids in the western Kuruktag area, northeastern Tarim Craton. Three distinct periods of granitoid magmatism are evident: circa 830–820 Ma, 660–630 Ma, and 420–400 Ma. The magma sources, melting conditions (pressure, temperature, and water availability), and tectonic settings of various granitoids from each period are determined. Based on our results and the geological, geochronological, geochemical, and isotopic data from adjacent areas, a long-lived accretionary orogenic model is proposed. This model involves an early phase (circa 950–780 Ma) of southward advancing accretion from the Tianshan to northern Tarim and a late phase (circa 780–600 Ma) of northward retreating accretion, followed by back-arc opening and subsequent bidirectional subduction (circa 460–400 Ma) of a composite back-arc basin (i.e., the South Tianshan Ocean). Our model highlights a long-lived accretionary history of the southwestern CAOB, which may have initiated as part of the circum-Rodinia subduction zone and was comparable with events occurring at the southern margin of the Siberian Craton, thus challenging the traditional southward migrating accretionary models for the CAOB.
Related items
Showing items related by title, author, creator and subject.
-
Ge, R.; Zhu, W.; Wilde, Simon (2016)Long-lived exterior accretionary orogeny shapes tectonothermal evolution of the peripheral building blocks of supercontinents and leads to considerable crustal growth. However, such accretionary orogeny has only been ...
-
He, J.; Zhu, W.; Ge, Rongfeng; Zheng, B.; Wu, H. (2014)The northern margin of the Tarim Craton plays a pivotal role in understanding the crustal evolution and supercontinent reconstruction of the Tarim Craton. Here we integrate LA-ICP-MS U-Pb ages and Hf isotopic data for ...
-
Ge, Rongfeng; Zhu, W.; Zheng, B.; Wu, H.; He, J.; Zhu, X. (2012)Extensive Neoproterozoic magmatism occurred in the Tarim Craton, providing a key to understanding the role of Tarim in the Rodinia and Gondwana supercontinents. We present LA-ICP-MS zircon U-Pb ages, Lu-Hf isotopic data ...