The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show that the protein encoded by At3g50930 is present as a homo-multimeric protein complex on the outer mitochondrial membrane and lacks the BCS1 domain present in yeast and mammalian BCS1 proteins, with the sequence similarity restricted to the AAA ATPase domain. Thus we propose to re-annotate this protein as AtOM66 (Outer Mitochondrial membrane protein of 66 kDa). While transgenic plants with reduced AtOM66 expression appear to be phenotypically normal, AtOM66 over-expression lines have a distinct phenotype, showing strong leaf curling and reduced starch content. Analysis of mitochondrial protein content demonstrated no detectable changes in mitochondrial respiratory complex protein abundance. Consistent with the stress inducible expression pattern, over-expression lines of AtOM66 are more tolerant to drought stress but undergo stress-induced senescence earlier than wild type. Genome-wide expression analysis revealed a constitutive induction of salicylic acid-related (SA) pathogen defence and cell death genes in over-expression lines. Conversely, expression of SA marker gene PR-1 was reduced in atom66 plants, while jasmonic acid response genes PDF1.2 and VSP2 have increased transcript abundance. In agreement with the expression profile, AtOM66 over-expression plants show increased SA content, accelerated cell death rates and are more tolerant to the biotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic fungus Botrytis cinerea. In conclusion, our results demonstrate a role for AtOM66 in cell death and amplifying SA signalling.
Related items
Showing items related by title, author, creator and subject.
-
Krishna, S.; Low, I.; Pervaiz, Shazib (2011)The Bcl-2 (Bcl is B-cell lymphocytic-leukaemia proto-oncogene) family comprises two groups of proteins with distinct functional biology in cell-fate signalling. Bcl-2 protein was the first member to be discovered and ...
-
Indran, I.; Hande, M.; Pervaiz, Shazib (2011)The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the telomerase holoenzyme. Evidence is accumulating to link hTERT to activities other than telomere maintenance and immortalization. Here, we ...
-
Pohl, Sebastian; Agostino, Mark; Dharmarajan, Arunasalam; Pervaiz, Shazib (2018)SIGNIFICANCE B cell lymphoma-2 (Bcl-2) is the prototypical anti-apoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. Identified as a consequence chromosomal translocation (t ...