Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Minimum Risk Path Planning for Submarines through a Sensor Field

    Access Status
    Fulltext not available
    Authors
    Caccetta, Louis
    Loosen, Ian
    Rehbock, Volker
    Date
    2007
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Caccetta, Louis and Loosen, Ian and Rehbock, Volker. 2007. Minimum Risk Path Planning for Submarines through a Sensor Field, in M. Fukushima, et al (ed), The 7th International Conference on Optimization: Techniques and Applications (ICOTA7), Dec 12 2007. Kobe, Japan: Universal Academy Press, Inc
    Source Title
    The 7th International Conference on Optimization: Techniques and Applications (ICOTA7) Proceedings
    Source Conference
    The 7th International Conference on Optimization: Techniques and Applications (ICOTA7)
    ISBN
    978-4-946443-15-2
    Faculty
    School of Science and Computing
    Department of Mathematics and Statistics
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/44428
    Collection
    • Curtin Research Publications
    Abstract

    One of the basic necessities in combat operations is the planning of paths for the traversal ofmilitary hardware and vehicles through adversarial environments. Typically, while still meetingmission objectives, the vehicle is required to arrive at a pre-described target while minimizingits risk exposure to enemy defence systems. As well as the technological constraints of thevehicle, such as fuel capacity, additional restrictions that can be imposed on the path includelimits on travelling time and route length. We specifically look at the problem of determining anoptimal submarine transit path for a submarine through a field of sonar sensors, subject to a totaltime and final position constraint. The path should be designed so as to minimize the overallprobability of detection. The strategy we propose involves a two stage approach. The first stageinvolves a discretized approximation of the problem by first constructing a grid like networkover the region. Possible paths are then restricted to the movement between the knots points (i.e.nodes) of this grid. In other words, the approximate problems involve finding the most costeffective paths through a network, subject to a total time constraint. What we have therefore is aConstrained Shortest Path Problem (CSPP). To solve the resulting CSPP we develop anefficient network heuristic method that uses a parameterization of the edge weights of thenetwork and the application of Dijkstra’s Algorithm. The second stage involves thedevelopment of an optimal control model, by introducing a very simple dynamical model for thevessel’s movements, and a solution procedure that utilizes the solution obtained in the first stageas a starting point. The optimal control model for our submarine transit path problem is in fact adiscrete valued control problem where the precise times between speed and heading switchesneed to be determined. We show that this optimal control problem can be readily solved withthe use of a technique known as the Control Parameterization Enhancing Transform (CPET),which, via a simple transformation, puts the problem into readily solvable standard canonicalform by standard optimal control software. Various aspects of our proposed method arediscussed. These include, among other things, the effects of different degrees of coarseness ofdiscretization used in the problem. A solution of the CSPP will only provide a good initial pointfor the optimal control problem if a sufficiently refined network grid model is used. We alsoshow how the subsequent number of switching points used within the optimal control phase canmake a significant difference on the final solution obtained. Computational results are presented supporting the use of our methodology.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimisation of large scale network problems
      Grigoleit, Mark Ted (2008)
      The Constrained Shortest Path Problem (CSPP) consists of finding the shortest path in a graph or network that satisfies one or more resource constraints. Without these constraints, the shortest path problem can be solved ...
    • Optimal control problems involving constrained, switched, and delay systems
      Loxton, Ryan Christopher (2010)
      In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
    • A gradient algorithm for optimal control problems with model-reality differences
      Kek, S.L.; Aziz, M.I.A.; Teo, Kok Lay (2015)
      In this paper, we propose a computational approach to solve a model-based optimal control problem. Our aim is to obtain the optimal solution of the nonlinear optimal control problem. Since the structures of both problems ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.