Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Tranquillityite: The last lunar mineral comes down to Earth

    Access Status
    Fulltext not available
    Authors
    Rasmussen, Birger
    Fletcher, Ian
    Gregory, Courtney
    Muhling, Janet
    Suvorova, Alexandra
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rasmussen, Birger and Fletcher, Ian and Gregory, Courtney and Muhling, Janet and Suvorova, Alexandra. 2012. Tranquillityite: The last lunar mineral comes down to Earth. Geology 40 (1): pp. 83-86.
    Source Title
    Geology
    DOI
    10.1130/G32525.1
    ISSN
    0091-7613
    URI
    http://hdl.handle.net/20.500.11937/44543
    Collection
    • Curtin Research Publications
    Abstract

    Tranquillityite [Fe2+8(ZrY)2Ti3Si3O24] was first discovered in mare basalts collected during the Apollo 11 lunar mission to the Sea of Tranquillity. The mineral has since been found exclusively in returned lunar samples and lunar meteorites, with no terrestrial counterpart. We have now identified tranquillityite in six dolerite dikes and sills from Western Australia. Terrestrial tranquillityite commonly occurs as clusters of fox-red laths closely associated with baddeleyite and zirconolite in quartz and K-feldspar intergrowths in late-stage interstices between plagioclase and pyroxene. Its composition is relatively uniform, comprising mostly Si, Zr, Ti, and Fe, with minor Al, Mg, Mn, Ca, Nb, Hf, Y, and rare earth elements. Its habit and chemistry are consistent with tranquillityite in lunar basalts, and it has a face-centered-cubic subcell, similar to that of annealed lunar tranquillityite. Unlike coexisting baddeleyite and zirconolite, it is commonly altered to a secondary intergrowth of submicron phases comprising mainly Si, Ti, and Ca, with minor Zr. In situ sensitive high-resolution ion microprobe (SHRIMP) U-Pb geochronology of tranquillityite from sills intruding the Eel Creek Formation, northeastern Pilbara Craton, yields a 207Pb/206Pb age of 1064 ± 14 Ma. This age indicates that the previously undated sills belong to the ca. 1070 Ma Warakurna large igneous province, extending the geographic range of this mafic complex. The date also provides a new minimum age (>1.05 Ga) for the intruded sedimentary rocks, which were previously thought to be Neoproterozoic. Examination of dolerite from Western Australia suggests that tranquillityite is a relatively widespread, albeit volumetrically minor, accessory mineral and, where sufficiently coarse, it represents an exceptional new U-Pb geochronometer.

    Related items

    Showing items related by title, author, creator and subject.

    • Terrestrial-like zircon in a clast from an Apollo 14 breccia
      Bellucci, J.; Nemchin, Alexander; Grange, M.; Robinson, K.; Collins, G.; Whitehouse, M.; Snape, J.; Norman, M.; Kring, D. (2019)
      A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and ...
    • Lunar neutron energy spectra from isotope abundance measurements on cadmium, samarium and gadolinium.
      Sands, Daphne G. (1998)
      This thesis provides new evidence which contributes to a clearer understanding of the mixing history of the lunar soil, the interactions of cosmic rays with the lunar surface and any temporal and spatial variations in ...
    • A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955
      Norman, M.; Nemchin, Alexander (2014)
      A sharp rise in the flux of asteroid-size bodies traversing the inner Solar System at 3.9 Ga has become a central tenet of recent models describing planetary dynamics and the potential habitability of early terrestrial ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.