Joint power and kinematics coordination in load carriage running: Implications for performance and injury
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5 m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0 m/s), knee angles at mid-stance (at 5.0 m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0 m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle → hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running.
Related items
Showing items related by title, author, creator and subject.
-
Liew, B.; Netto, Kevin; Morris, Susan (2017)© 2017 Human Kinetics, Inc. Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance ...
-
Liew, B.; Morris, S.; Netto, Kevin (2016)© 2016 Elsevier LtdRunning with load carriage has become increasingly prevalent in sport, as well as many field-based occupations. However, the “sources” of mechanical work during load carriage running are not yet completely ...
-
Liew, B.; Morris, Susan; Robinson, M.; Netto, Kevin (2016)© 2016 Elsevier Ltd. Valid measurement of pelvic and hip angles during posterior load carriage gait task requires placement of pelvic markers which will not be occluded or physically displaced by the load. One solution ...