Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Synthesis of magnetic carbon supported manganese catalysts for phenol oxidation by activation of peroxymonosulfate

    247731_247731.pdf (2.707Mb)
    Access Status
    Open access
    Authors
    Wang, Y.
    Xie, Y.
    Chen, C.
    Duan, X.
    Sun, Hongqi
    Wang, S.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, Y. and Xie, Y. and Chen, C. and Duan, X. and Sun, H. and Wang, S. 2017. Synthesis of magnetic carbon supported manganese catalysts for phenol oxidation by activation of peroxymonosulfate. Catalysts. 7 (1): 3.
    Source Title
    Catalysts
    DOI
    10.3390/catal7010003
    School
    Department of Chemical Engineering
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/

    URI
    http://hdl.handle.net/20.500.11937/44797
    Collection
    • Curtin Research Publications
    Abstract

    Magnetic core/shell nanospheres (MCS) were synthesized by a novel and facile one-step hydrothermal method. Supported manganese oxide nanoparticles (Fe3O4/C/Mn) were obtained from various methods (including redox, hydrothermal and impregnation) using MCS as the support material and potassium permanganate as the precursor of manganese oxide. The Mn/MCS catalysts were characterized by a variety of characterization techniques and the catalytic performances of Fe3O4/C/Mn nanoparticles were tested in activation of peroxymonosulfate to produce reactive radicals for phenol degradation in aqueous solutions. It was found that Fe3O4/C/Mn catalysts can be well dispersed and easily separated from the aqueous solutions by an external magnetic field. Kinetic analysis showed that phenol degradation on Fe3O4/C/Mn catalysts follows the first order kinetics. The peroxymonosulfate activation mechanism by Fe3O4/C/Mn catalysts for phenol degradation was then discussed.

    Related items

    Showing items related by title, author, creator and subject.

    • Phenol degradation on heterogeneous catalytic oxidation by using cobalt-natural zeolite catalyst
      Muhammad, Syaifullah; Saputra, Edy; Wang, Shaobin; Tade, Moses (2011)
      Two types of catalysts based on Indonesia Natural Zeolite (INZ) and Australia Natural Zeolite (ANZ) were prepared by impregnation of 5% of active metal cobalt. The synthesized catalysts were calcined in air at 550°C for ...
    • Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water
      Muhammad, Syaifullah; Shukla, Pradeep; Tade, Moses; Wang, Shaobin (2012)
      Activated carbon (AC) and Zeolite Socony Mobil-5 (ZSM5) supported ruthenium oxide catalysts were prepared and tested to degrade aqueous phenol in the presence of peroxymonosulphate. The physicochemical properties of ...
    • Removal of phenol using sulphate radicals activated by natural zeolite-supported cobalt catalysts
      Muhammad, Syaifullah; Saputra, E.; Sun, Hongqi; Ang, Ha-Ming; Tade, Moses; Wang, Shaobin (2013)
      Two Co oxide catalysts supported on natural zeolites from Indonesia (INZ) and Australia (ANZ) were prepared and used to activate peroxymonosulphate for degradation of aqueous phenol. The two catalysts were characterized ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.