The effects of spring stiffness on vortex-induced vibration for energy generation
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Vortex-induced vibration (VIV) is the turbulent motion induced on bluff body that generates alternating lift forces and results in irregular movement of the body. VIV-powered system seems a good idea in greening the energy sector and most importantly is its ability to take advantages of low current speed of water to generate electricity. This paper aims to investigate the effects of spring stiffness on the characteristic of VIV. The study is important in order to maximize these potentially destructive vibrations into a valuable resource of energy. Five cylinders with the range of 0.25 to 2.00 inch diameter are tested to study the behavior of VIV. Results from this experiment indicates that, the 2.0 inch cylinder gave the lowest error in frequency ratio which is 1.1% and have a high potential of lock-in condition to occur. In term of maximum amplitude, this cylinder gave the highest amplitude of oscillation motion that is equal to 0.0065 m.