Show simple item record

dc.contributor.authorWang, P.
dc.contributor.authorWu, Yong Hong
dc.date.accessioned2017-01-30T15:17:16Z
dc.date.available2017-01-30T15:17:16Z
dc.date.created2012-03-25T20:01:24Z
dc.date.issued2011
dc.identifier.citationWang, Peiguang and Wu, Yonghong. 2011. Quasilinearization of dynamic equations on time scales involving the sum of three functions. International Journal of Pure and Applied Mathematics. 70 (6): pp. 843-854.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/44933
dc.description.abstract

In this paper, we present and discuss a method of quasilinearization, coupled with the method of upper and lower solutions for the solutions of a class of two-point boundary value problem of dynamic equations on time scales concerning the sum of three functions. A monotone iterative scheme whose elements converge rapidly to the unique solution of the problem is established, and the convergence is shown to be of order k + 1 (k >= 1).

dc.publisherAcademic Publications
dc.relation.urihttp://www.ijpam.eu/contents/2011-70-6/7/7.pdf
dc.subjecttime scales
dc.subjectrapid convergence
dc.subjectdynamic equations
dc.subjectupper and lower solutions
dc.subjectquasilinearization
dc.titleQuasilinearization of dynamic equations on time scales involving the sum of three functions
dc.typeJournal Article
dcterms.source.volume70
dcterms.source.startPage843
dcterms.source.endPage854
dcterms.source.issn13118080
dcterms.source.titleInternational Journal of Pure and Applied Mathematics
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record