Accurate Rates of the Complex Mechanisms for Growth and Dissolution of Minerals Using a Combination of Rare-Event Theories
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Mineral growth and dissolution are often treated as occurring via a single reversible process that governs the rate of reaction. We show that multiple distinct intermediate states can occur during both growth and dissolution. Specifically, we used metadynamics, a method for efficiently exploring the free-energy landscape of a system, coupled to umbrella sampling and reactive flux calculations to examine the mechanism and rates of attachment and detachment of a barium ion onto a stepped barite (BaSO4) surface. The activation energies calculated for the rate-limiting reactions, which are different for attachment and detachment, precisely match those measured experimentally during both growth and dissolution. These results can potentially explain anomalous non-steady-state mineral reaction rates observed experimentally and will enable the design of more efficient growth inhibitors and facilitate an understanding of the effect of impurities.
Related items
Showing items related by title, author, creator and subject.
-
Vavouraki, A.; Putnis, Christine; Putnis, Andrew; Koutsoukos, P. (2010)Growth and dissolution of calcite {1014} surfaces in aqueous solutions in the presence of fluoride ions have been studied by in situ atomic force microscopy (AFM). Supersaturated and undersaturated solutions with respect ...
-
Ruiz-Agudo, E.; Urosevic, M.; Putnis, Christine; Rodríguez-Navarro, C.; Cardell, C.; Putnis, Andrew (2011)Specific effects of background electrolytes on mineral growth and dissolution can be interpreted on the basis of the ability of ions to modify solute hydration, in a similar way to the systematic effects of inorganic ions ...
-
Kowacz, M.; Putnis, Andrew (2008)Barium sulfate is used as a model system to illustrate how solution composition can affect processes of crystal dissolution and growth. Rates and modes of reactions as well as morphological features can be modified by the ...