Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reactions paths and end-points using the example of model salt systems
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The volume change of solid phases associated with dissolution and precipitation reactions during mineral replacement is a critical factor for the advancement of the reaction boundary. Contributing parameters to the overall volume change of a replacement reaction are the molar volume of parent and product and their solubility ratio within a given solution. Based on simple model salt systems, the contribution of solubility to volume change is quantitatively determined. For NaCl-KCl as an example of a binary salt system without solid solution, the relative volume changes can be calculated for various reaction paths using the slope of the solubility from a simple solubility diagram. For KBr-KCl as an example of a binary salt system with complete solid solution, the determination of the solubility curve is based on a modified Lippmann phase diagram called a solubility phase diagram. It allows a quantitative calculation of the relative volume change based on the solid solutionaqueous solution (SS-AS) relationships for variable solution compositions and reaction paths in the salt-water system. Reaction kinetics, textures and the compositional evolution of replacements in both salt systems can be conclusively explained by the relative volume change on the basis of experimentally constrained reaction paths. The analogy from simple model system to replacement reactions at the Earth's surface and crustal conditions (for example in apatites or feldspars) may offer insights to successfully describe volume changes and porosity generation in mineral reactions on the basis of solubility data towards a more quantitative modeling of interface-coupled dissolution-precipitation reactions.
Related items
Showing items related by title, author, creator and subject.
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Wang, Kai (2012)Atmospheric leaching (AL) of low-grade nickel laterite ores can produce a pregnant leach solution (PLS) containing significant amounts of impurities such as trivalent iron, aluminium and chromium ions. Purification of PLS ...
-
Rossiter, Angelina Jane (2009)Due to the ductile nature of the sodium nitrate crystal which deforms plastically under high levels of strain, most of the crystal growth studies in aqueous solution have focussed on the influence of tensile strain, ...