Random Finite Sets for Robot Mapping and SLAM: New Concepts in Autonomous Robotic Map Representations
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
ISBN
School
Collection
Abstract
Machines which perceive the world through the use of sensors, make computational decisions based on the sensors’ outputs and then influence the world with actuators, are broadly labelled as “Robots”. Due to the imperfect nature of all real sensors and actuators, the lack of predictability within real environments and the necessary approximations to achieve computational decisions, robotics is a science which is becoming ever more dependent on probabilistic algorithms. Autonomous robot vehicles are examples of such machines, which are now being used in areas other than the factory floors, and which therefore must operate in unstructured, and possibly previously unexplored environments. Their reliance on probabilistic algorithms, which can interpret sensory data and make decisions in the presence of uncertainty, is increasing. Therefore, mathematical interpretations of the vehicle’s environment which consider all the relevant uncertainty are of a fundamental importance to an autonomous vehicle, and its ability to function reliably within that environment. While a universal mathematical model which considers the vast complexities of the physical world remains an extremely challenging task, stochastic mathematical representations of a robots operating environment are widely adopted by the autonomous robotic community. Probability densities on the chosen map representation are often derived and then recursively propagated in time via the Bayesian framework, using appropriate measurement likelihoods.
Related items
Showing items related by title, author, creator and subject.
-
Weber, Keven (1998)Giving robots the ability to move around autonomously in various real-world environments has long been a major challenge for Artificial Intelligence. New approaches to the design and control of autonomous robots have shown ...
-
Adams, M.; Mullane, J.; Vo, Ba-Ngu (2011)Perceptive laser and radar sensors provide information from the surrounding environment and are a critical aspect of many robotics applications. These sensors are generally subject to many sources of uncertainty, namely ...
-
Wurdemann, H.; Georgiou, E.; Cui, Lei; Dai, J. (2011)This paper investigates simultaneous localization and mapping (SLAM) problem by exploiting the Microsoft Kinect™ sensor array and an autonomous mobile robot capable of self-localization. The combination of them covers the ...