Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modelling of interfacial friction damping of carbon nanotube-based nanocomposites

    Access Status
    Fulltext not available
    Authors
    Lin, R.
    Lu, Chungsheng
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lin, R. and Lu, C. 2010. Modelling of interfacial friction damping of carbon nanotube-based nanocomposites. Mechanical Systems and Signal Processing. 24 (8): pp. 2996-3012.
    Source Title
    Mechanical Systems and Signal Processing
    DOI
    10.1016/j.ymssp.2010.06.003
    ISSN
    08883270
    School
    Department of Mechanical Engineering
    Remarks

    The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/622912/description#description Copyright © 2010 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/45160
    Collection
    • Curtin Research Publications
    Abstract

    Carbon nanotube-based composite is becoming increasingly popular and offers great potential for highly demanding practical high strength and high damping applications. The excellent damping capacity of CNTs is primarily due to the interfacial friction between carbon nanotubes and polymer resins and the extremely large interfacial surface area over a given specific mass (specific area). In this paper, damping characteristics of carbon nanotube-based composites have been investigated, with an objective of developing an effective and accurate analytical model, which can be used as a design tool for the damping design of such materials. Based on the interfacial slips between the resin and nanotubes and between the nanotubes themselves, a micro stick-slip damping model has been developed. Such a physically derived model is believed to be appropriate and representative of the actual complex damping mechanism of the material system. The model, developed for the first time, is analytical and relates explicitly the material properties of the resin and nanotubes and the processing parameters to the overall material damping loss factor and hence it offers the possibility for material engineers to possibly optimize the damping for required applications.Due to the nonlinear force–displacement relationship derived under the micro stick-slip, a harmonic linearization method, the Describing Function method, has been employed to analyse its vibration characteristics and to derive the required damping loss factors. From the analytical formula, it can be seen that the damping loss factor of the material system depends on the individual material properties of the resin and the nanotubes, structural deformation, nanotube volume fraction and the critical shear stresses at which interfacial slips take place. By taking careful considerations of these design parameters, optimized carbon nanotube-based composites for advanced damping applications can be developed. Extensive numerical simulations have been carried out to establish the practical applicability of the proposed analytical model. Based on realistic material properties of carbon nanotubes and polymer resins, damping characteristics have been predicted which compare well with existing results from open literature. The results have shown that for a volume fraction as small as 1%, a damping loss factor as high as 20% can be achieved which is adequate for most practical applications. The model has been further developed to deal with bending vibrations where different parts of the material are subject to different vibration strain levels. A practical case of cantilevered beam vibration has been employed to demonstrate the practical application of the proposed model.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Microstructural design and properties of high performance recycled cellulose fibre reinforced polymer eco-nanocomposites
      Alamri, Hatem Rashed (2012)
      In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.