Show simple item record

dc.contributor.authorThomas, E.
dc.contributor.authorZeps, Nikolajs
dc.contributor.authorRigby, P.
dc.contributor.authorHartmann, P.
dc.date.accessioned2017-01-30T10:39:44Z
dc.date.available2017-01-30T10:39:44Z
dc.date.created2015-10-29T04:09:33Z
dc.date.issued2011
dc.date.submitted2015-10-29
dc.identifier.citationThomas, E. and Zeps, N. and Rigby, P. and Hartmann, P. 2011. Reactive oxygen species initiate luminal but not basal cell death in cultured human mammary alveolar structures: A potential regulator of involution. Cell Death and Disease. 2 (8): Article ID e189.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/4535
dc.identifier.doi10.1038/cddis.2011.69
dc.description.abstract

Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched for the CD49f(+) mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents an useful means to investigate this and other mechanisms further.

dc.titleReactive oxygen species initiate luminal but not basal cell death in cultured human mammary alveolar structures: A potential regulator of involution
dc.typeJournal Article
dcterms.dateSubmitted2015-10-29
dcterms.source.volume2
dcterms.source.number8
dcterms.source.titleCell Death and Disease
curtin.digitool.pid232070
curtin.identifier.elementsidELEMENTS-67075
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record