RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This is an Accepted Manuscript of an article published in Marine Geodesy on 23 May 2013, available online: http://www.tandfonline.com/10.1080/01490419.2013.779334
Collection
Abstract
We apply the residual terrain modeling (RTM) technique for gravity forward-modeling to successfully improve high-resolution global gravity fields at short spatial scales in coastal zones. The RTM scheme is combined with the concept of rock-equivalent topography, allowing to use a single uniform constant mass-density in the RTM forward-modeling, both at land and sea. SRTM30_PLUS bathymetry is merged with higher-resolution SRTM V4.1 land topography, and expanded into spherical harmonics to degree 2160, yielding a new and consistent high-degree RTM reference surface. The forward-modeling performance is demonstrated in coastal zones of Greece and Canada using ground-truth vertical deflections, gravity from land and shipborne gravimetry, and geoid heights from GPS/leveling, with improvements originating from bathymetry clearly identified. We demonstrate that the SRTM30_PLUS bathymetry carries information on gravity field structures at spatial scales less than 5 arc minutes, which can be used to augment EGM2008 in (rugged) coastal zones, both over land and marine areas. This may be of value (i) to partially reduce the signal omission error in EGM2008/GOCE-based height transfer in areas devoid of dense gravity data, (ii) to fill the gap between land gravity and shipborne gravity along rugged coastlines and (iii) for the development of next-generation altimetric gravity fields.
Related items
Showing items related by title, author, creator and subject.
-
Rexer, Moritz; Hirt, Christian (2015)Classical degree variance models (such as Kaula’s rule or the Tscherning-Rapp model) often rely on low-resolution gravity data and so are subject to extrapolation when used to describe the decay of the gravity field at ...
-
Hirt, Christian; Featherstone, Will (2011)We present a high-resolution lunar gravity field model (LGM2011) that provides gravity accelerations, free-air gravity anomalies, selenoid undulations and vertical deflections over the entire Moon’s surface. LGM2011 is ...
-
Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, R.; Seitz, K.; Gruber, T. (2014)This paper describes the computation and analysis of the Earth’s short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We ...