Mesoscale modelling of concrete tensile failure mechanism at high strain rates
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
At mesoscale, concrete may be regarded as a three-phase composite consisting of coarse aggregate, mortar matrix and interfacial transition zone (ITZ) between the aggregate and the mortar matrix. In the present paper, mesoscale model is adopted to analyze the dynamic tensile behaviour of concrete at high strain rates; especially, the effects of the ITZ on the failure properties are analyzed. In the mesoscale model, to simplify the problem, the shape of the coarse aggregate is assumed to be circular and the ITZ zone is modelled as a thin boundary layer around the aggregate. Dynamic material properties and continuum damage mechanics theory are employed to simulate the material behaviour of the three phases. Numerical simulation of the concrete samples under tension at different strain rates are carried out. Different aggregate size, different aggregate distribution and different material properties are considered. Strain rate effect is also analyzed. From the numerical results, it is found that the dynamic failure (crack) pattern is highly affected by the aggregate distribution. It is also found that the properties of the interfacial transition zone significantly influence the failure mechanism and the tensile strength of concrete.
Related items
Showing items related by title, author, creator and subject.
-
Zhou, X.; Hao, Hong (2008)Uniaxial compression tests are the most common tests for characterizing the strength of concrete-like materials. The dynamic compression strength of concrete-like material is typically obtained by Split Hopkinson Pressure ...
-
Hao, Yifei; Hao, Hong; Li, Z. (2013)The compressive strength of concrete material increases with the strain rate. The dynamic compressive strength of concrete material is usually obtained by conducting laboratory tests such as split Hopkinson pressure bar ...
-
Hao, Y.; Hao, Hong (2011)The dynamic strength of concrete materials is usually obtained by conducting laboratory tests such as drop-weight test or split Hopkinson pressure bar (SHPB) test. It is widely accepted that the uniaxial compressive ...