An investigation into Dynamic Modulus of Western Australia Hot Mix Asphalt
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
Most road networks in Western Australia (WA) are made of flexible pavement with a relatively thin asphalt wearing course and Dense Graded Asphalt (DGA), a commonly used asphalt mix with a continuous size distribution and a low design air-void of around 3% to 7%. Currently, the input parameters for asphalt material for pavement design in Australia still rely entirely on the resilient modulus which cannot incorporate the visco-elastic behaviour of such material into pavement analysis and design. Unlike the resilient modulus, the recently introduced parameter of the dynamic modulus can express the intrinsic behaviour of the visco-elasticity of an asphalt material. The dynamic modulus can describe the stress-strain relationship of viscoelastic material across a wide range of temperatures and frequencies in the form of the Master Curve. The Master Curve is constructed from a sigmoidal function and the Time-Temperature Superposition principle (TTS) with a second-order polynomial shift factor function, according to AASHTO PP62-09. This study aims to investigate the dynamic modulus of Western Australian asphalt mixes, considering three different mixes with varying maximum aggregate sizes of 7 mm, 10 mm, and 14 mm. For this study, all test specimens were controlled to reach a 5% air-void with a Survopac gyratory compactor. Specimens were then tested with an Asphalt Mixture Performance Tester (AMPT) with a testing range of four temperatures: 4°C, 21°C, 37°C and 54°C, and six frequencies; 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 25 Hz, according to AASHTO TP62-07. Moreover, the dynamic modulus predictive equation proposed by NCHRP 1-37A MEPDG was modified and introduced to suit WA asphalt mixes.
Related items
Showing items related by title, author, creator and subject.
-
Nusit, K.; Jitsangiam, Peerapong; Nikraz, Hamid; Hewa Thalagahage, R. (2014)Cement-treated base is a conveniently and effectively stabilised pavement material consisting of a mixture of standard base course materials blended with a prescribed amount of Portland cement and water. The cement-treated ...
-
Nusit, K.; Jitsangiam, Peerapong; Kodikara, J.; Bui, H.; Leung, G.L.M. (2015)One of the most common methods used in road-pavement construction is the stabilizing of the conventional pavement base course layer. This is achieved by adding cement or lime to gain better material performance. However, ...
-
Kumlai, S.; Jitsangiam, Peerapong; Nikraz, Hamid (2014)The modulus of asphalt concrete material is one of the major input parameters in mechanical-empirical pavement design and analysis. In Australia, current pavement design approaches rely on the resilient modulus of the ...