Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions

    Access Status
    Fulltext not available
    Authors
    Yuan, D.
    Li, X.
    Zhao, Q.
    Zhao, J.
    Tade, Moses
    Liu, Shaomin
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yuan, Deling and Li, Xinyong and Zhao, Qidong and Zhao, Jijun and Tade, Moses and Liu, Shaomin. 2014. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions. Journal of Catalysis. 309: pp. 268-279.
    Source Title
    Journal of Catalysis
    DOI
    10.1016/j.jcat.2013.09.010
    ISSN
    0021-9517
    URI
    http://hdl.handle.net/20.500.11937/45655
    Collection
    • Curtin Research Publications
    Abstract

    A series of hydrotalcite-based CuxTi1 (x = 2, 3, 4, 5)-mixed oxide catalysts have been synthesized by homogeneous precipitation and tested in the selective catalytic reduction (SCR) of NO by C3H6 in the presence of excess oxygen. Cu atoms can be categorized into surface and bulk species. The surface Cu species are the active sites while the bulk Cu species possess adsorption property for nitrogen species, and such bulk Cu species varies from CuxTiyOz to CuO with increasing Cu content. The Cu3Ti1 catalyst with the highest amount of surface copper and Lewis acid sites exhibits the best catalytic performance due to its improved electrophilicity of CuxTiyOz, which enhance the adsorption capability of nitrogen species. In situ infrared characterization revealed that nitrates in terms of bridging, bidentate and chelating species are reactive toward acetate and formate, and they are the key intermediates produced during the SCR of NO.

    Related items

    Showing items related by title, author, creator and subject.

    • Biochar as a fuel: 3. Mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity
      Yip, Kong; Xu, M.; Li, Chun-Zhu; Jiang, San Ping; Wu, Hongwei (2011)
      This study reports a mechanistic investigation on the thermal annealing process at mild temperatures (750 and 900 C) and its effect on the reactivity of biochar prepared from the pyrolysis of a Western Australia mallee ...
    • Significance of surface-generated radicals in the gas-solid catalytic reactions
      Syed Hassan, Syed Shatir Asghrar (2010)
      The conversion of light hydrocarbons with solid catalysts is an important class of reactions in the chemical and energy industries. Our knowledge on the exceedingly complex reaction kinetics of these catalytic reactions, ...
    • Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination
      Wang, Y.; Cao, H.; Chen, L.; Chen, C.; Duan, Xiaoguang; Xie, Y.; Song, W.; Sun, Hongqi; Wang, Shaobin (2018)
      © 2018 Elsevier B.V. Anode graphite was recovered from a spent lithium ion battery (LIB) and reutilized as a carbon precursor to obtain graphene-based materials. Characterization results revealed that impurities were ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.