Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Several graphene–titania composites (G–TiO2) were synthesized by a sol–gel method using titanium isopropoxide (or P25) as Ti-precursors and reduced graphene oxide (RGO). The structural, morphological, and physicochemical properties of the samples were thoroughly investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), UV–vis diffuse reflectance (UV–vis DRS), and thermogravimetric-differential thermal analysis (TG-DTA). A significant increase in light absorption to visible light was observed by G–TiO2 compared with that of naked TiO2. The photocatalytic activity of G–TiO2 in methylene blue bleaching under visible light (>430 nm) is much enhanced. G–TiO2 synthesized from titanium isopropoxide hydrolysis presented higher activity than that of G–TiO2(P25). Contribution of graphene on the enhancement of visible-light photocatalytic activity of the composite was discussed.
Related items
Showing items related by title, author, creator and subject.
-
Liu, Shizhen (2013)Graphene has impressible absorbing ability and its electron transmission capacity makes it a great prosperity in many science horizons. In this study graphene or graphite nitride has been employed as a carrier in order ...
-
Hou, Y.; Li, Xin Yong; Zhao, Q.; Chen, G. (2013)Great efforts have been made recently to develop graphene-based visible-light-response photocatalysts and investigate their application in environmental field. In this study, a novel graphene-supported ZnFe2O4 multi-porous ...
-
Ai, B.; Duan, X.; Sun, Hongqi; Qiu, X.; Wang, Shaobin (2015)Hybrid photocatalysts of graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) composites were prepared in one-pot via a thermal condensation of melamine with different amounts of graphene oxide (GO). As ...