Immiscible Displacements and Capillary Trapping in CO2 Storage
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
Source Conference
School
Collection
Abstract
We measure the residual non-wetting phase saturation of super-critical carbon dioxide in a Berea sandstone core. We use the porous plate method while a stirred reactor ensures equilibrium between the carbon dioxide and brine. We also measure carbon dioxide-brine contact angles on the porous plate to understand wetting behavior in the experiment. The application of the work is for carbon dioxide storage in aquifers, where capillary trapping is a rapid and effective mechanism to render the injected fluid immobile. The experiment was performed at temperature and pressure representative of potential subsurface storage formations. The measured residual saturation is 37% which is lower than the measured residual for an oil-brine system on a similar core (48%), but higher than measured by other authors for super-critical CO2 in Berea sandstone. We suggest that super-critical CO2 is still non-wetting in sandstones with considerable trapping and discuss the implications for CO2 storage in aquifers.
Related items
Showing items related by title, author, creator and subject.
-
Al-Mansoori, S.; Iglauer, Stefan; Pentland, C.; Blunt, M. (2009)We measure the trapped saturations of oil and gas as a function of initial saturation in water-wet sand packs. We start with a water-saturated column and inject octane (oil), while water and oil are produced from the ...
-
Pentland, C.; Iglauer, Stefan; El-Maghraby, R.; Okabe, H.; Tsuchiya, Y.; Blunt, M. (2010)Capillary trapping has been identified as a fast and effective method to render injected carbon dioxide (CO2) immobile as disconnected pore-scale droplets surrounded by brine. We measure trapped CO2 saturations in sandstones ...
-
Raza, A.; Gholami, Raoof; Rezaee, M. Reza; Bing, C.; Ramasamy, Nagarajan; Hamid, M. (2017)Carbon capture and sequestration technology is a major approach developed to mitigate the amount of greenhouse gases released into the atmosphere. Technically, depleted oil and gas reservoirs are one of the feasible ...