Show simple item record

dc.contributor.authorHoseinnezhad, R.
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorSuter, D.
dc.date.accessioned2017-01-30T15:23:36Z
dc.date.available2017-01-30T15:23:36Z
dc.date.created2015-03-03T20:17:10Z
dc.date.issued2012
dc.identifier.citationHoseinnezhad, R. and Vo, B. and Vo, B.T. and Suter, D. 2012. Visual Tracking of Numerous Targets via Multi-Bernoulli Filtering of Image Data. Pattern Recognition. 45 (10): pp. 3625-3635.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/45836
dc.identifier.doi10.1016/j.patcog.2012.04.004
dc.description.abstract

This paper presents a novel Bayesian method to track multiple targets in an image sequence without explicit detection. Our method is formulated based on finite set representation of the multi-target state and the recently developed multi-Bernoulli filter. Experimental results on sport player and cell tracking studies show that our method can automatically track numerous targets, and it outperforms the state-of-the-art in terms of false positive (false alarm) and false negative (missing) rates as detection error measures, and in terms of label switching rate and lost tracks ratio as tracking error measures.

dc.publisherPergamon Press
dc.titleVisual Tracking of Numerous Targets via Multi-Bernoulli Filtering of Image Data
dc.typeJournal Article
dcterms.source.volume45
dcterms.source.number10
dcterms.source.startPage3625
dcterms.source.endPage3635
dcterms.source.issn00313203
dcterms.source.titlePattern Recognition
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record