An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Remarks
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acs.analchem.5b03091
Collection
Abstract
Arrays of microscale interfaces between two immiscible electrolyte solutions (µITIES) were formed using glass membranes perforated with microscale pores by laser ablation. Square arrays of 100 micropores in 130 µm thick borosilicate glass coverslips were functionalized with trichloro(1H,1H,2H,2H-perfluorooctyl)silane on one side, to render the surface hydrophobic and support the formation of aqueous-organic liquid-liquid microinterfaces. The pores show a conical shape, with larger radii at the laser entry side (26.5 µm) than at the laser exit side (11.5 µm). The modified surfaces were characterized by contact angle measurements and X-ray photoelectron spectroscopy. The organic phase was placed on the hydrophobic side of the membrane, enabling the array of µITIES to be located at either the wider or narrower pore mouth. The electrochemical behavior of the µITIES arrays were investigated by tetrapropylammonium ion transfer across water-1,6-dichlorohexane interfaces together with finite element computational simulations. The data suggest that the smallest microinterfaces (formed on the laser exit side) were located at the mouth of the pore in hemispherical geometry, while the larger microinterfaces (formed on the laser entry side) were flatter in shape but exhibited more instability due to the significant roughness of the glass around the pore mouths. The glass membrane-supported µITIES arrays presented here provide a new platform for chemical and biochemical sensing systems. © 2016 American Chemical Society.
Related items
Showing items related by title, author, creator and subject.
-
Strutwolf, J.; Arrigan, Damien (2010)Micropore membranes have been used to form arrays of micro interfaces between immiscible electroly tesolutions (μITIES) as a basis for the sensing of non-redoxactiveions. Implementation of stripping voltammetry as asensing ...
-
Berduque, A.; Zazpe, R.l; Arrigan, Damien (2008)The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (ITIES) is presented. Microfabricated ...
-
Strutwolf, J.; Scanlon, M.; Arrigan, Damien (2009)Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemicalmethods. In this work, microporous silicon membranes which can be used for interface miniaturisationwere characterized ...