Weak Euler Approximation for Ito Diffusion and Jump Processes
dc.contributor.author | Mikulevicius, R. | |
dc.contributor.author | Zhang, Changyong | |
dc.date.accessioned | 2017-01-30T15:23:57Z | |
dc.date.available | 2017-01-30T15:23:57Z | |
dc.date.created | 2016-02-28T19:30:29Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Mikulevicius, R. and Zhang, C. 2015. Weak Euler Approximation for Ito Diffusion and Jump Processes. Stochastic Analysis and Applications. 33 (3): pp. 549-571. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/45878 | |
dc.identifier.doi | 10.1080/07362994.2015.1014102 | |
dc.description.abstract |
This article studies the rate of convergence of the weak Euler approximation for Itô diffusion and jump processes with Hölder-continuous generators. It covers a number of stochastic processes including the nondegenerate diffusion processes and a class of stochastic differential equations driven by stable processes. To estimate the rate of convergence, the existence of a unique solution to the corresponding backward Kolmogorov equation in Hölder space is first proved. It then shows that the Euler scheme yields positive weak order of convergence. | |
dc.publisher | Taylor & Francis Inc. | |
dc.title | Weak Euler Approximation for Ito Diffusion and Jump Processes | |
dc.type | Journal Article | |
dcterms.source.volume | 33 | |
dcterms.source.number | 3 | |
dcterms.source.startPage | 549 | |
dcterms.source.endPage | 571 | |
dcterms.source.issn | 0736-2994 | |
dcterms.source.title | Stochastic Analysis and Applications | |
curtin.department | CBS International | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |