Differential properties and optimality conditions for generalized weak vector variational inequalities
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In this paper, we study a generalized weak vector variational inequality, which is a generalization of a weak vector variational inequality and a Minty weak vector variational inequality. By virtue of a contingent derivative and a Φ-contingent cone, we investigate differential properties of a class of set-valued maps and obtain an explicit expression of its contingent derivative. We also establish some necessary optimality conditions for solutions of the generalized weak vector variational inequality, which generalize the corresponding results in the literature. Furthermore, we establish some unified necessary and sufficient optimality conditions for local optimal solutions of the generalized weak vector variational inequality. Simultaneously, we also show that there is no gap between the necessary and sufficient conditions under an appropriate condition.
Related items
Showing items related by title, author, creator and subject.
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
-
Ruan, Ning (2012)Duality is one of the most successful ideas in modern science [46] [91]. It is essential in natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis, we consider the canonical duality ...
-
Rockafellar, R.T.; Sun, Jie (2020)Lagrangian variational inequalities feature both primal and dual elements in expressing first-order conditions for optimality in a wide variety of settings where “multipliers” in a very general sense need to be brought ...