Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores

    213585_213585a.pdf (1.267Mb)
    Access Status
    Open access
    Authors
    Vukmanovic, Zoja
    Reddy, Steven
    Godel, B.
    Barnes, S.
    Fiorentini, M.
    Barnes, S.
    Kilburn, M.R.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Vukmanovic, Z. and Reddy, S. and Godel, B. and Barnes, S. and Fiorentini, M. and Barnes, S. and Kilburn, M.R. 2014. Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores. Lithos. 184-187: pp. 42-61.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2013.10.037
    ISSN
    0024-4937
    School
    Department of Applied Geology
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in the journal Lithos. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in the journal Lithos, Vol.184-187, (2014). DOI: http://doi.org/10.1016/j.lithos.2013.10.037

    URI
    http://hdl.handle.net/20.500.11937/45916
    Collection
    • Curtin Research Publications
    Abstract

    Komatiite-hosted nickel sulphides from the Yilgarn Craton (Australia) consist of two main sulphide phases: pyrrhotite (Fe7S8) and pentlandite ((Fe,Ni)9S8); two minor sulphide phases: chalcopyrite (CuFeS2) and pyrite (FeS2) and trace arsenides. Samples of massive sulphides from three deposits with diverse deformation and metamorphic histories (the Silver Swan, Perseverance and Flying Fox deposits) have been studied by electron backscatter diffraction and laser ablation inductively coupled plasma mass spectrometry and nano-scale secondary ion mass spectrometry. These ore bodies were selected to investigate the relationship between microstructures and mineral trace element chemistry in three dominant sulphide species in each deposit. In all three samples, pyrrhotite preserves a strong evidence of crystal plasticity relative to both pentlandite and pyrite. The trace element composition of pyrrhotite shows significant variation in specific elements (Pb, Bi and Ag). This variation correlates spatially with intragrain pyrrhotite microstructures, such as low angle and twin boundaries. Minor signatures of crystal plasticity in pyrite and pentlandite occur in the form of rare low angle boundaries (pentlandite) and mild lattice misorientation (pyrite). Trace element compositions of pentlandite and pyrite show no correlation with microstructures.Variations in pyrrhotite are interpreted as a result of intragrain diffusion during the syn- and post-deformation history of the deposit. Intragrain diffusion can occur either due to bulk diffusion, dislocation–impurity pair diffusion, or by “pipe diffusion”, i.e. along fast diffusion pathways at high and low angle, and twin boundaries. This contribution examines three different diffusion models and suggests that dislocation–impurity pair diffusion and pipe diffusion are the most likely processes behind increased trace element concentration along the microstructures in pyrrhotite. The same phenomenon is observed in samples from three different deposits that experienced widely different metamorphic conditions, implying that the final disposition of these elements reflects a post peak-metamorphic stage of the geological history of all three deposits.

    Related items

    Showing items related by title, author, creator and subject.

    • Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite
      Fougerouse, Denis; Reddy, Steven; Kirkland, Chris; Saxey, David; Rickard, William; Hough, R. (2018)
      © 2018 China University of Geosciences (Beijing) and Peking University The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In ...
    • In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models
      LaFlamme, C.; Martin, L.; Jeon, H.; Reddy, Steven; Selvaraja, V.; Caruso, S.; Bui, T.; Roberts, M.; Voute, F.; Hagemann, S.; Wacey, D.; Littman, S.; Wing, B.; Fiorentini, M.; Kilburn, M. (2016)
      With growing interest in the application of in situ multiple sulfur isotope analysis to a variety of mineral systems, we report here the development of a suite of sulfur isotope standards for distribution relevant to ...
    • Microstructural evolution and trace element mobility in Witwatersrand pyrite
      Reddy, Steven; Hough, R. (2013)
      Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.