Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction

    Access Status
    Fulltext not available
    Authors
    Cheng, Yi
    Shen, P.
    Jiang, San Ping
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cheng, Y. and Shen, P. and Jiang, S.P. 2014. NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. International Journal of Hydrogen Energy. 39: pp. 20662-20670.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2014.06.156
    ISSN
    0360-3199
    School
    Centre for Fuels and Energy (COE)
    URI
    http://hdl.handle.net/20.500.11937/46053
    Collection
    • Curtin Research Publications
    Abstract

    Ni oxide based nanoparticles (NPs) have been widely used as electrocatalysts in the electrochemical energy storage and conversion applications. In this paper, NiOx NPs are successfully synthesized by the self-assembly of Ni precursor onto polyethylenimine functionalized carbon nanotubes (PEI-CNTs) assisted with microwave radiation. NiOx NPs with size around 2–3 nm are homogenously dispersed on the PEI-CNTs supports with no aggregation. The electrochemical activity of NiOx NPs on PEI-CNTs, NiOx/PEI-CNTs, as effective electrocatalysts is studied for supercapacitor and oxygen evolution reaction in alkaline solutions. NiOx/PEI-CNTs show a capacitance of 1728 and 1576 F g−1 based on active material, and 221 and 394 F g−1 based on total catalyst loading on 12.5% and 25% NiOx/PEI-CNTs, respectively, which is substantially higher than 152 F g−1 of unsupported NiO. The NiOx/PEI-CNTs electrodes exhibit reversible and stale capacitance of ~1200 F g−1 based on active materials after 2000 cycles at a high current density of 10 A g−1. NiOx/PEI-CNTs also exhibit significantly higher activities for oxygen evolution reaction (OER) of water electrolysis, achieving a current density of 100 A g−1 at an overpotential of 0.35 V for 25% NiOx/PEI-CNTs. It is believed that the uniformly dispersed nano-sized NiOx NPs and synergistic effect between the NiOx NPs and PEI-CNTs is attributed to the high electrocatalytic performance of NiOx/PEI-CNTs electrocatalysts. The results demonstrate that NiOx NPs supported on PEI-CNTs are highly effective electrocatalysts for electrochemical energy storage and conversion applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Pristine carbon nanotubes as non-metal electrocatalysts for oxygenevolution reaction of water splitting
      Cheng, Yi; Xu, C.; Jia, Lichao; Gale, Julian; Zhang, L.; Liu, C.; shen, P.; Jiang, San Ping (2015)
      Oxygen evolution reaction (OER) is one of the most important reactions in electrochemical energy storage and conversion systems. Thus, the development of efficient electrocatalysts with high activity and durability is of ...
    • First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells
      Cheng, Yi ; Wang, M.; Lu, S.; Tang, C.; Wu, X.; Veder, Jean-Pierre ; Johannessen, B.; Thomsen, L.; Zhang, J.; Yang, S.Z.; Wang, S.; Jiang, San Ping (2021)
      Phosphate poisoning of Pt electrocatalysts is one of the major barriers that constrains the performance of phosphoric acid-doped polybenzimidazole (PA/PBI) membrane fuel cells. Herein, we developed new atomically dispersed ...
    • Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting
      Wu, X.; Yu, J.; Yang, G.; Liu, H.; Zhou, W.; Shao, Zongping (2018)
      © 2018 Elsevier Ltd Perovskite oxides recently have emerged as efficient electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline solution. However, most perovskites ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.