Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A Hybrid Method Combining Genetic Algorithm and Hooke-Jeeves Method for Constrained Global Optimization

    Access Status
    Open access via publisher
    Authors
    Long, Q.
    Wu, Changzhi
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Long, Q. and Wu, C. 2014. A Hybrid Method Combining Genetic Algorithm and Hooke-Jeeves Method for Constrained Global Optimization. Journal of Industrial and management optimization. 10 (4): pp. 1279-1296.
    Source Title
    Journal of Industrial and management optimization
    DOI
    10.3934/jimo.2014.10.1279
    ISSN
    1547-5816
    School
    Department of Construction Management
    URI
    http://hdl.handle.net/20.500.11937/46063
    Collection
    • Curtin Research Publications
    Abstract

    A new global optimization method combining genetic algorithm and Hooke-Jeeves method to solve a class of constrained optimization problems is studied in this paper. We first introduce the quadratic penalty function method and the exact penalty function method to transform the original constrained optimization problem with general equality and inequality constraints into a sequence of optimization problems only with box constraints. Then, the combination of genetic algorithm and Hooke-Jeeves method is applied to solve the transformed optimization problems. Since Hooke-Jeeves method is good at local search, our proposed method dramatically improves the accuracy and convergence rate of genetic algorithm. In view of the derivative-free of Hooke-Jeeves method, our method only requires information of objective function value which not only can overcome the computational difficulties caused by the ill-condition of the square penalty function, but also can handle the non-differentiability by the exact penalty function. Some well-known test problems are investigated. The numerical results show that our proposed method is efficient and robust.

    Related items

    Showing items related by title, author, creator and subject.

    • A study of optimization and optimal control computation : exact penalty function approach
      Yu, Changjun (2012)
      In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
    • Optimal control problems with constraints on the state and control and their applications
      Li, Bin (2011)
      In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
    • Optimal control problems involving constrained, switched, and delay systems
      Loxton, Ryan Christopher (2010)
      In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.