Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100. km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.
Related items
Showing items related by title, author, creator and subject.
-
Alexander, P.; Duncan, Alec; Bose, N.; Smith, D. (2013)The propagation of underwater acoustic signals in polar regions is dominated by an upward refracting sound speed environment and the presence of a dynamic highly variable ice canopy. This paper provides an overview of the ...
-
Caley, M.; Duncan, Alec (2011)The underwater acoustic communication channel is characterised by transient signal fading across multiple propagation paths and much greater time spread between first and last arrivals than in terrestrial wireless systems. ...
-
Caley, Michael; Duncan, Alexander (2011)The underwater acoustic communication channel is characterised by transient signal fading across multiple propagation paths and much greater time spread between first and last arrivals than in terrestrial wireless systems. ...