Glucocorticoid-Induced Bone Loss Is Associated with Abnormal Intravertebral Areal Bone Mineral Density Distribution
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/ Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Copyright © 2013 Louise I. Manning et al.
Collection
Abstract
Individuals with glucocorticoid-induced osteoporosis experience vertebral fractures at an increased rate and at higher vertebral areal bone mineral density (aBMD) than individuals with primary osteoporosis. Standard posteroanterior- (PA-) projection dual energy X-ray absorptiometry (DXA) lacks the diagnostic sensitivity required for reliable estimation of vertebral fracture risk in individuals. Assessment of subregional vertebral aBMD using lateral-projection DXA may improve the predictive value of DXA parameters for fracture. One hundred and four individuals were recruited and grouped for this study: primary osteoporosis with no history of vertebral fracture (n = 43), glucocorticoid-induced bone loss (n = 13), and healthy controls (n = 48). Standard PA-projection and supine-lateral scans were performed, and lateral scans were analysed according to an established protocol to measure aBMD within 6 subregions. Main effects for subregion and group were assessed and observed, by ANCOVA. Ratios were calculated between subregions and compared between groups, to overcome the potentially confounding influence of variability in subregional geometry. Significantly lower values were observed in the glucocorticoid group for the ratios of (i) anterior subregion: whole vertebral body and (ii) posterior: whole vertebral body when compared to the primary osteoporosis and control groups (P < 0.0 5). Lower anterior subregional aBMD in individuals on glucocorticoid therapy may help to explain the increased vertebral fracture risk in this patient group.
Related items
Showing items related by title, author, creator and subject.
-
Briggs, Andrew; Perilli, Egon; Parkinson, Ian; Kantor, Susan; Wrigley, Tim; Fazzalari, Nicola; Wark, John (2012)Although a strong relationship exists between areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) and bone strength, the predictive validity of aBMD for osteoporotic vertebral fractures ...
-
Briggs, Andrew; Perilli, E.; Codrington, J.; Reynolds, K.; Parkinson, I.; Wark, J. (2014)Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study ...
-
Mullin, Benjamin H (2011)Previous studies have identified the 3p14-p22 chromosomal region as a quantitative trait locus for bone mineral density (BMD). The overall aim of this thesis is to identify the gene or genes from this region that are ...