Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Molecular line mapping of the giant molecular cloud associated with RCW 106-IV. Ammonia towards dust emission

    199314_117718_MNRAS-2014-Lowe-256-73.pdf (2.719Mb)
    Access Status
    Open access
    Authors
    Lowe, V.
    Cunningham, M.
    Urquhart, J.
    Marshall, J.
    Horiuchi, S.
    Lo, N.
    Walsh, Andrew
    Jordan, C.
    Jones, P.
    Hill, T.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lowe, V. and Cunningham, M. and Urquhart, J. and Marshall, J. and Horiuchi, S. and Lo, N. and Walsh, A. et al. 2014. Molecular line mapping of the giant molecular cloud associated with RCW 106-IV. Ammonia towards dust emission. Monthly Notices of the Royal Astronomical Society. 441 (1): pp. 256-273.
    Source Title
    Monthly Notices of the Royal Astronomical Society
    DOI
    10.1093/mnras/stu568
    ISSN
    0035-8711
    Remarks

    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/46179
    Collection
    • Curtin Research Publications
    Abstract

    Here we report observations of the two lowest inversion transitions of ammonia (NH3) with the 70-m Tidbinbilla radio telescope. The aim of the observations is to determine the kinetic temperatures in the dense clumps of the G333 giant molecular cloud associated with RCW 106 and to examine the effect that accurate measures of temperature have on the calculation of derived quantities such as mass. This project is part of a larger investigation to understand the time-scales and evolutionary sequence associated with high-mass star formation, particularly its earliest stages. Assuming that the initial chemical composition of a giant molecular cloud is uniform, any abundance variations within will be due to evolutionary state. We have identified 63 clumps using SEST Imaging Bolometer Array 1.2-mm dust continuum maps and have calculated gas temperatures for most (78 per cent) of these dense clumps. After using Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire 8.0 μm emission to separate the sample into infrared (IR)-bright and IR-faint clumps, we use statistical tests to examine whether our classification shows different populations in terms of mass and temperature. We find that in terms of log clump mass (2.44–4.12 M☉) and log column density (15.3–16.6 cm−2), that there is no significant population difference between IR-bright and IR-faint clumps, and that kinetic temperature is the best parameter to distinguish between the gravitationally bound state of each clump.The kinetic temperature was the only parameter found to have a significantly low probability of being drawn from the same population. This suggests that clump radii do not have a large effect on the temperature of a clump, so clumps of similar radii may have different internal heating mechanisms. We also find that while the IR-bright clumps have a higher median log virial mass than the IR-faint clumps (IR-bright: 2.88 M☉; IR-faint: 2.73M☉), both samples have a similar range for both virial mass and full width at half-maximum (FWHM; IR-bright: log virial mass = 2.03–3.68 M☉, FWHM = 1.17–4.50 km s−1; IR-faint: log virial mass = 2.09–3.35 M☉, FWHM = 1.05–4.41 km s−1). There are 87 per cent (40 of 46) of the clumps with masses larger than the virial mass, suggesting that they will form stars or are already undergoing star formation.

    Related items

    Showing items related by title, author, creator and subject.

    • Physical and chemical conditions in methanol maser selected hot cores and UCH II regions
      Purcell, C.; Longmore, S.; Burton, M.; Walsh, Andrew; Minier, V.; Cunningham, M.; Balasubramanyam, R. (2009)
      We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of ...
    • Multi-generation massive star-formation in NGC 3576
      Purcell, C.; Minier, V.; Longmore, S.; André, P.; Walsh, Andrew; Jones, P.; Herpin, F.; Hill, T.; Cunningham, M.; Burton, M. (2009)
      Context: Recent 1.2-mm continuum observations have shown the giant H II region NGC 3576 to be embedded in the centre of an extended filamentary dust-cloud. The bulk of the filament away from the H II region contains a ...
    • The earliest phases of high-mass star formation: the NGC 6334-NGC 6357 complex
      Russeil, D.; Zavagno, A.; Motte, F.; Schneider, N.; Bontemps, S.; Walsh, Andrew (2010)
      Context. Our knowledge of high-mass star formation has been mainly based on follow-up studies of bright sources found by IRAS, and has thus been incomplete for its earliest phases, which are inconspicuous at infrared ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.