Show simple item record

dc.contributor.authorBudhaditya, S.
dc.contributor.authorPhung, D.
dc.contributor.authorPham, DucSon
dc.contributor.authorVenkatesh, S.
dc.contributor.editorPei, J.
dc.contributor.editorTseng, V.S.
dc.contributor.editorCao, L.
dc.contributor.editorMotoda, H.
dc.contributor.editorXu, G.
dc.date.accessioned2017-01-30T15:25:43Z
dc.date.available2017-01-30T15:25:43Z
dc.date.created2014-02-06T20:00:33Z
dc.date.issued2013
dc.identifier.citationBudhaditya, Saha and Phung, Dinh and Pham, Duc-Son and Venkatesh, Svetha. 2013. Clustering Patient Medical Records via Sparse Subspace Representation, in Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (ed), Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Apr 14-17 2013, pp. 123-134. Gold Coast, Qld: UTS: Advanced Analytics Institute.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/46203
dc.identifier.doi10.1007/978-3-642-37456-2_11
dc.description.abstract

The health industry is facing increasing challenge with “big data” as traditional methods fail to manage the scale and complexity. This paper examines clustering of patient records for chronic diseases to facilitate a better construction of care plans. We solve this problem under the framework of subspace clustering. Our novel contribution lies in the exploitation of sparse representation to discover subspaces automatically and a domain-specific construction of weighting matrices for patient records. We show the new formulation is readily solved by extending existing 1 -regularized optimization algorithms. Using a cohort of both diabetes and stroke data we show that we outperform existing benchmark clustering techniques in the literature.

dc.publisherSpringer
dc.subjectdata mining
dc.subjectsparse subspace clustering
dc.subjectconvex optimization
dc.subjectregularization
dc.subjecthealthcare
dc.titleClustering Patient Medical Records via Sparse Subspace Representation
dc.typeConference Paper
dcterms.source.startPage123
dcterms.source.endPage134
dcterms.source.titleAdvances in Knowledge Discovery and Data Mining, Lecture Notes on Computer Science Volume 7819
dcterms.source.seriesAdvances in Knowledge Discovery and Data Mining, Lecture Notes on Computer Science Volume 7819
dcterms.source.isbn9783642374555
dcterms.source.conference17th Pacific-Asia Conference on Knowledge Discovery and Data Mining
dcterms.source.conference-start-dateApr 14 2013
dcterms.source.conferencelocationGold Coast, Australia
dcterms.source.placeBerlin, Germany
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record