Clustering Patient Medical Records via Sparse Subspace Representation
dc.contributor.author | Budhaditya, S. | |
dc.contributor.author | Phung, D. | |
dc.contributor.author | Pham, DucSon | |
dc.contributor.author | Venkatesh, S. | |
dc.contributor.editor | Pei, J. | |
dc.contributor.editor | Tseng, V.S. | |
dc.contributor.editor | Cao, L. | |
dc.contributor.editor | Motoda, H. | |
dc.contributor.editor | Xu, G. | |
dc.date.accessioned | 2017-01-30T15:25:43Z | |
dc.date.available | 2017-01-30T15:25:43Z | |
dc.date.created | 2014-02-06T20:00:33Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Budhaditya, Saha and Phung, Dinh and Pham, Duc-Son and Venkatesh, Svetha. 2013. Clustering Patient Medical Records via Sparse Subspace Representation, in Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (ed), Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Apr 14-17 2013, pp. 123-134. Gold Coast, Qld: UTS: Advanced Analytics Institute. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/46203 | |
dc.identifier.doi | 10.1007/978-3-642-37456-2_11 | |
dc.description.abstract |
The health industry is facing increasing challenge with “big data” as traditional methods fail to manage the scale and complexity. This paper examines clustering of patient records for chronic diseases to facilitate a better construction of care plans. We solve this problem under the framework of subspace clustering. Our novel contribution lies in the exploitation of sparse representation to discover subspaces automatically and a domain-specific construction of weighting matrices for patient records. We show the new formulation is readily solved by extending existing 1 -regularized optimization algorithms. Using a cohort of both diabetes and stroke data we show that we outperform existing benchmark clustering techniques in the literature. | |
dc.publisher | Springer | |
dc.subject | data mining | |
dc.subject | sparse subspace clustering | |
dc.subject | convex optimization | |
dc.subject | regularization | |
dc.subject | healthcare | |
dc.title | Clustering Patient Medical Records via Sparse Subspace Representation | |
dc.type | Conference Paper | |
dcterms.source.startPage | 123 | |
dcterms.source.endPage | 134 | |
dcterms.source.title | Advances in Knowledge Discovery and Data Mining, Lecture Notes on Computer Science Volume 7819 | |
dcterms.source.series | Advances in Knowledge Discovery and Data Mining, Lecture Notes on Computer Science Volume 7819 | |
dcterms.source.isbn | 9783642374555 | |
dcterms.source.conference | 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining | |
dcterms.source.conference-start-date | Apr 14 2013 | |
dcterms.source.conferencelocation | Gold Coast, Australia | |
dcterms.source.place | Berlin, Germany | |
curtin.department | ||
curtin.accessStatus | Fulltext not available |