Survival mixture modelling of recurrent infections
dc.contributor.author | Lee, Andy | |
dc.contributor.author | Zhao, Yun | |
dc.contributor.author | Yau, Kelvin | |
dc.contributor.author | Ng, Shu | |
dc.contributor.editor | Masahiro Mizuta | |
dc.contributor.editor | Junji Nakano | |
dc.date.accessioned | 2017-01-30T15:25:51Z | |
dc.date.available | 2017-01-30T15:25:51Z | |
dc.date.created | 2009-05-14T02:17:08Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Lee, Andy and Zhao, Yun and Yau, Kelvin and Ng, Shu. 2008. Survival mixture modelling of recurrent infections, in Mizuta, M. and Nakano, J. (ed), Joint Meeting of 4th World Conference of the IASC and 6th Conference of the Asian Regional Section of the IASC on Computational Statistics and Data Analysis, Dec 5 2008, pp. 1008-1014, Yokohama, Japan: Japanese Society of Computational Statistics. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/46232 | |
dc.description.abstract |
Recurrent infections data are commonly encountered in biomedical applications, where the recurrent events are characterised by an acute phase followed by a stable phase after the index episode. Two-component survival mixture models, in both proportional hazards and accelerated failure time settings, are presented as a flexible method of analysing such data. To account for the inherent dependency of the recurrent observations, random effects are incorporated within the conditional hazard function. Assuming a Weibull or log-logistic baseline hazard in both mixture components of the survival mixture model, an EM algorithm is developed for the residual maximum quasi-likelihood estimation of fixed effect and variance components parameters. The methodology is implemented as a graphical user interface coded using Microsoft visual C++. Application to model recurrent urinary tract infections for elderly women is illustrated, where significant individual variations are evident at both acute and stable phases. The survival mixture methodology developed enable practitioners to identify pertinent risk factors affecting the recurrent times and to draw valid conclusions inferred from these correlated and heterogeneous survival data. | |
dc.publisher | Japanese Society of Computational Statistics | |
dc.title | Survival mixture modelling of recurrent infections | |
dc.type | Conference Paper | |
dcterms.source.startPage | 1008 | |
dcterms.source.endPage | 1014 | |
dcterms.source.title | Proceedings IASC2008 | |
dcterms.source.series | Proceedings of International Association for Statistical Computing "IASC" 2008 | |
dcterms.source.isbn | 9784990444518 | |
dcterms.source.conference | Joint Meeting of 4th World Conference of the IASC and 6th Conference of the Asian Regional Section of the IASC on Computational Statistics & Data Analysis | |
dcterms.source.conference-start-date | 5 Dec 2008 | |
dcterms.source.conferencelocation | Pacifico Yokohama, Japan | |
dcterms.source.place | Tokyo, Japan | |
curtin.note |
Copyright © 2008 IASC International Association for Statistical Computing. All right reserved. | |
curtin.department | Epidemiology and Biostatistics | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Health Sciences | |
curtin.faculty | School of Public Health |