Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Estimation of rock frame weakening using time-lapse crosswell: Frio brine pilot project

    Access Status
    Fulltext not available
    Authors
    Al Hosni, M.
    Vialle, Stephanie
    Gurevich, Boris
    Daley, T.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Al Hosni, M. and Vialle, S. and Daley, T. and Gurevich, B. 2016. Estimation of rock frame weakening using time-lapse crosswell: Frio brine pilot project. Geophysics. 81 (6) pp. B235-B245.
    Source Title
    Geophysics
    DOI
    10.1190/geo2015-0684.1
    ISSN
    1942-2156
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/46234
    Collection
    • Curtin Research Publications
    Abstract

    CO2 injection into subsurface reservoirs leads to pressure and saturation changes. Furthermore, CO2 -brine-minerals interaction could result in dissolution or reprecipitation of rock frame-forming minerals. Observed time-lapse seismic associated with CO2 injection into poorly consolidated sandstone at the Frio CO2 injection site (Texas, USA) could not be predicted using classical rock-physics models (i.e., models involving elastic changes in the rock frame due to saturations and/or pressures changes only, and assuming no changes in the rock microstructure). That, and the changes in the fluid chemistry after CO2 injection, suggests that the assumption of a constant rock microstructure might be violated. Using high-resolution time-lapse crosswell data, we have developed a methodology for estimating changes in the rock frame by quantifying the rock-frame drained moduli before and after CO2 injection. Based on rock microstructure diagnostics, we found that the changes in the drained frame elastic properties are due to the changes in the grain contact-cement percentage. The reduction in contact-cement percent is found to be variable throughout the reservoir, with a maximum near the injection well, down to 0.01% from the initial 0.1% contact cement; this results in more than 40% reduction in the drained frame shear and bulk moduli. CO2 saturation was estimated using this model for uniform and patchy saturation cases. Our rock-physics analysis may allow improved interpretation of time-lapse seismic for CO2 saturation in the context of other poorly consolidated sandstones with similar geomechanical properties. Having the P- and S-wave velocity time-lapse data is key to improve saturation estimates with this analysis method.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Saturation scale effect on time-lapse seismic signatures
      Qi, Q.; Müller, T.; Gurevich, Boris (2016)
      Quantitative interpretation of time-lapse seismic signatures aims at assisting reservoir engineering and management operations. Time-lapse signatures are thought to be primarily induced by saturation and pressure changes. ...
    • Rock physics changes due to CO2 injection : the CO2CRC Otway Project
      Wisman, Putri Sari (2012)
      The CO2CRC Otway Project aims to demonstrate that CO2 can be safely stored in a depleted gas field and that an appropriate monitoring strategy can be deployed to verify its containment. The project commenced in 2005, with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.