Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Understanding postmineralization tectonic movements in porphyry deposits, is critical to interpreting the complete thermal-tectonic history. This study reports new zircon U–Pb ages, hydrothermal biotite 39Ar/40Ar age, and zircon and apatite (U–Th)/He ages from the Baogutu porphyry copper deposit, which, in conjunction with pre-existing geochronology and thermochronology and inverse modeling simulations, constrain the thermal-tectonic history of the deposit. Zircon LA-ICP-MS U–Pb concordia ages indicate a Late Carboniferous age of 320.1 ± 2.2 Ma for the diorite complex and 309.8 ± 2.2 Ma for the mineralized granodiorite porphyry. Hydrothermal biotite selected from a quartz–biotite–chalcopyrite vein yields a plateau age of 311.0 ± 1.8 Ma which agrees with the age of the granodiorite porphyry and a previously reported molybdenite Re–Os age, and suggests that hydrothermal fluid circulated about 310 m.y. ago. Diorite and granodiorite porphyry yield weighted mean zircon (U–Th)/He ages of 200.6 ± 5.7 Ma and 241.1 ± 8.1 Ma, respectively, with ages ranging from 221.0 Ma to 174.3 Ma and 225.9 to 261.6 Ma. Weighted mean diorite and granodiorite porphyry apatite (U–Th)/He ages of 87.4 ± 2.3 Ma and 120.0 ± 4.2 Ma were obtained with ages ranging from 68.9 Ma to 100.8 Ma, and from 91.0 Ma to 152.0 Ma, respectively. The wide range of zircon (U–Th)/He ages may be due to the combined effects of U and Th zonation and radiation damage, and radiation damage effect may also account for the wide range of apatite (U–Th)/He ages.The combined effects of depth and cooling due to meteoric water circulation contribute to an older (U–Th)/He age for the granodiorite porphyry, relative to the diorite. A five-episode cooling rate history for the diorite can be deduced by inverse model simulation: fast cooling—moderate fast cooling—relatively slow cooling—fast cooling again—very slow cooling. The thermal and tectonic history of the wall rock indicates that it suffered significant far-field effects from the Qiangtang–Eurasia and Lhasa–Qiangtang collision, however, no visible thermal effect from the India–Asia collision is observed.
Related items
Showing items related by title, author, creator and subject.
-
Leng, C.; Cooke, D.; Hou, Z.; Evans, Noreen; Zhang, X.; Chen, W.; Danisik, Martin; McInnes, Brent; Yang, J. (2018)The Triassic Pulang porphyry Cu-Au deposit, located in the South Yidun terrane, is the oldest and one of the largest porphyry deposits in the southeastern Tibetan Plateau. The mineralization occurs mostly in the potassic ...
-
Wang, F.; Chen, H.; Batt, G.; Lin, X.; Gong, J.; Gong, G.; Meng, L.; Yang, S.; Jourdan, Fred (2015)The Jiangshan–Shaoxing suture zone, a component of the Neoprotozoic orogenic belt between the Yangtze and Cathaysia blocks in South China, has experienced a complex history of tectonic reactivation. Previous investigations ...
-
Kohút, M.; Danišík, Martin (2017)U-Pb Sensitive High-Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U-Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic ...