A convex geometry based blind source separation method for separating nonnegative sources
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hullspanned by the mapped observations. Considering these zerosamples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method.
Related items
Showing items related by title, author, creator and subject.
-
Yang, Z.; Xiang, Y.; Rong, Yue; Xie, S. (2013)This paper presents a projection pursuit (PP) based method for blind separation of nonnegative sources. First, the available observation matrix is mapped to construct a new mixing model, in which the unaccessible source ...
-
Yang, Z.; Xiang, Y.; Xie, S.; Ding, S.; Rong, Yue (2012)The problem of nonnegative blind source separation (NBSS) is addressed in this paper, where both the sources and the mixing matrix are nonnegative. Because many real-world signals are sparse, we deal with NBSS by sparse ...
-
Gupta, Sunil Kumar (2011)The growing number of information sources has given rise to joint analysis. While the research community has mainly focused on analyzing data from a single source, there has been relatively few attempts on jointly analyzing ...