Circumventing the Feature Association Problem in SLAM
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
In autonomous applications, a vehicle requires reliable estimates of its location and information about the world around it. To capture prior knowledge of the uncertainties in a vehicle's motion response to input commands and sensor measurements, this fundamental task has been cast as probabilistic Simultaneous Localization and Map building (SLAM). SLAM has been investigated as a stochastic filtering problem in which sensor data is compressed into features, which are consequently stacked in a vector, referred to as the map. Inspired by developments in the tracking literature, recent research in SLAM has recast the map as a Random Finite Set (RFS) instead of a random vector, with huge mathematical consequences. With the application of recently formulated Finite Set Statistics (FISST), such a representation circumvents the need for fragile feature management and association routines, which are often the weakest component in vector based SLAM algorithms. This tutorial demonstrates that true sensing uncertainty lies not only in the spatial estimates of a feature, but also in its existence. This gives rise to sensor probabilities of detection and false alarm, as well as spatial uncertainty values. By re-addressing the fundamentals of SLAM under an RFS framework, it will be shown that it is possible to estimate the map in terms of true feature number, as well as location. The concepts are demonstrated with short range radar, which detects multiple features, but yields many false measurements. Comparison of vector, and RFS SLAM algorithms shows the superior robustness of RFS based SLAM to such realistic sensing defects.
Related items
Showing items related by title, author, creator and subject.
-
Mullane, J.; Vo, Ba-Ngu; Adams, M.; Vo, B. (2011)The previous chapter provided the motivation to adopt an RFS representation for the map in both FBRM and SLAM problems. The main advantage of the RFS formulation is that the dimensions of the measurement likelihood and ...
-
Le Cras, Jared R (2012)This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted ...
-
Mullane, J.; Vo, Ba-Ngu; Adams, M.; Vo, Ba Tuong (2011)This paper proposes an integrated Bayesian frame work for feature-based simultaneous localization and map building (SLAM) in the general case of uncertain feature number and data association. By modeling the measurements ...