A regularized smoothing Newton method for symmetric cone complementarity problems
dc.contributor.author | Kong, L. | |
dc.contributor.author | Sun, Jie | |
dc.contributor.author | Xiu, N. | |
dc.date.accessioned | 2017-01-30T15:27:32Z | |
dc.date.available | 2017-01-30T15:27:32Z | |
dc.date.created | 2014-09-02T20:01:17Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Kong, L. and Sun, J. and Xiu, N. 2008. A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM Journal on Optimization. 19 (3): pp. 1028-1047. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/46475 | |
dc.identifier.doi | 10.1137/060676775 | |
dc.description.abstract |
This paper extends the regularized smoothing Newton method in vector complementarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem as special cases. In particular, we study strong semismoothness and Jacobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform approximation property and the Jacobian consistency of the Chen–Mangasarian smoothing function of the natural residual. Based on these properties, global and quadratical convergence of the proposed algorithm is established. | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.title | A regularized smoothing Newton method for symmetric cone complementarity problems | |
dc.type | Journal Article | |
dcterms.source.volume | 19 | |
dcterms.source.startPage | 1028 | |
dcterms.source.endPage | 1047 | |
dcterms.source.issn | 1052-6234 | |
dcterms.source.title | SIAM Journal on Optimization | |
curtin.note |
Copyright © 2008 Society for Industrial and Applied Mathematics | |
curtin.accessStatus | Open access |