Show simple item record

dc.contributor.authorKong, L.
dc.contributor.authorSun, Jie
dc.contributor.authorXiu, N.
dc.date.accessioned2017-01-30T15:27:32Z
dc.date.available2017-01-30T15:27:32Z
dc.date.created2014-09-02T20:01:17Z
dc.date.issued2008
dc.identifier.citationKong, L. and Sun, J. and Xiu, N. 2008. A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM Journal on Optimization. 19 (3): pp. 1028-1047.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/46475
dc.identifier.doi10.1137/060676775
dc.description.abstract

This paper extends the regularized smoothing Newton method in vector complementarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem as special cases. In particular, we study strong semismoothness and Jacobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform approximation property and the Jacobian consistency of the Chen–Mangasarian smoothing function of the natural residual. Based on these properties, global and quadratical convergence of the proposed algorithm is established.

dc.publisherSociety for Industrial and Applied Mathematics
dc.titleA regularized smoothing Newton method for symmetric cone complementarity problems
dc.typeJournal Article
dcterms.source.volume19
dcterms.source.startPage1028
dcterms.source.endPage1047
dcterms.source.issn1052-6234
dcterms.source.titleSIAM Journal on Optimization
curtin.note

Copyright © 2008 Society for Industrial and Applied Mathematics

curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record