Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modeling elastic anisotropy resulting from the application of triaxial stress

    Access Status
    Fulltext not available
    Authors
    Collet, O.
    Gurevich, Boris
    Madadi, Mahyar
    Pervukhina, M.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Collet, O. and Gurevich, B. and Madadi, M. and Pervukhina, M. 2014. Modeling elastic anisotropy resulting from the application of triaxial stress. Geophysics. 79 (5): pp. C135-C145.
    Source Title
    Geophysics
    DOI
    10.1190/GEO2013-0311.1
    ISSN
    0016-8033
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/4649
    Collection
    • Curtin Research Publications
    Abstract

    Elastic wave velocities in rocks vary with stress due to the presence of discontinuities and microcracks within the rock. We analytically derived a model to account for stress dependency of seismic velocities when a rock is subjected to triaxial stresses. We first considered a linearly isotropic elastic medium permeated by a distribution of cracks with random orientations. The geometry of cracks is not specified; instead, their behavior is defined by a ratio B of their normal to tangential excess compliances. When this isotropic rock is subjected to triaxial stresses, cracks tend to close depending on their orientation with respect to the applied stresses. For small stresses, the model predicts ellipsoidal anisotropy and expresses the ratios of Thomsen’s parameters ϵ/γ in the three orthogonal planes of symmetry as a function of the compliance and Poisson’s ratios. It also establishes relationships between anisotropy parameters and stress ratios. Deriving the model for larger stresses shows that such results still hold for stresses as high as approximately 40 MPa. There is a reasonable agreement between the model predictions and laboratory measurements made on a sample of Penrith sandstone, although crack opening in the direction of maximum stress should be taken into account for larger stresses. The proposed model could be used to differentiate stress-induced anisotropy from fracture-induced anisotropy. Besides, if the cause of anisotropy is known, then this model could enable one to determine P-wave anisotropy from S-wave anisotropy.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling elastic anisotropy of dry rocks as a function of applied stress
      Madadi, Mahyar; Pervukhina, Marina; Gurevich, Boris (2013)
      We propose an analytical model for seismic anisotropy caused by the application of an anisotropic stress to an isotropic dry rock. We first consider an isotropic, linearly elastic medium (porous or non-porous) permeated ...
    • An analytical model for stress-induced anisotropy of a cracked solid
      Gurevich, Boris; Pervukhina, M. (2010)
      One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth's crust. In this paper we analytically derive the pattern of seismic anisotropy caused by application of ...
    • An analytic model for the stress-induced anisotropy of dry rocks
      Gurevich, Boris; Pervukhina, M.; Makarynska, Dina (2011)
      One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth's crust. We have developed an analytic model for seismic anisotropy caused by the application of a small ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.