Malaysia traffic sign recognition with convolutional neural network
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
Traffic sign recognition system is an important subsystem in advanced driver assistance systems (ADAS) that assisting a driver to detect a critical driving scenario and subsequently making an immediate decision. Recently, deep architecture neural network is popular because it adapts well in various kind of scenarios, even those which were not used during training. Therefore, a deep architecture neural network is implemented to perform traffic sign classification in order to improve the traffic sign recognition rate. A comparative study for a deep and shallow architecture neural network is presented in this paper. Deep and shallow architecture neural network refer to convolutional neural network (CNN) and radial basis function neural network (RBFNN) respectively. In the simulation result, two types of training modes had been compared i.e. incremental training and batch training. Experimental results show that incremental training mode trains faster than batch training mode. The performance of the convolutional neural network is evaluated with the Malaysian traffic sign database and achieves 99% of the recognition rate.
Related items
Showing items related by title, author, creator and subject.
-
Lim, Hann; Seng, K.; Ang, L. (2010)This paper presents a novel traffic sign recognition system comprising of: (i) Color/shape classification, (ii) Pictogram extraction, (iii) Features selection and, (iv) Lyapunov Theory-based Radial Basis Function neural ...
-
Liu, Jingjing; Ge, Hongwei; Li, Jiajie; He, Pengcheng; Hao, Zhangang; Hitch, Michael (2022)Sustainable public transport is an important factor to boost urban economic development, and it is also an important part of building a low-carbon environmental society. The application of driverless technology in public ...
-
Lim, King Hann; Seng, Kah Phooi; Ang, Li-Minn (2012)Lyapunov theory-based radial basis function neural network (RBFNN) is developed for traffic sign recognition in this paper to perform multiple inputs multiple outputs (MIMO) classification. Multidimensional input is ...