Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Galileo IOV RTK positioning: standalone and combined with GPS

    200779_200779.pdf (909.5Kb)
    Access Status
    Open access
    Authors
    Odijk, Dennis
    Teunissen, Peter
    Khodabandeh, A.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Odijk, D. and Teunissen, P. and Khodabandeh, A. 2014. Galileo IOV RTK positioning: standalone and combined with GPS. Survey Review. 46 (337): pp. 267-277.
    Source Title
    Survey Review
    DOI
    10.1179/1752270613Y.0000000084
    ISSN
    0039-6265
    School
    Department of Spatial Sciences
    Remarks

    The publishers website is located in the Related Links field

    NOTICE: This is the author’s version of a work in which changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

    URI
    http://hdl.handle.net/20.500.11937/46631
    Collection
    • Curtin Research Publications
    Abstract

    Results are presented of real time kinematic (RTK) positioning based on carrier phase and code (pseudorange) observations of the four Galileo In-Orbit Validation (IOV) satellites, as they were in orbit and transmitting navigation data at the time of writing this article (2013). These Galileo data were collected by multi-GNSS receivers operated by Curtin University and as such this article is one of the first presenting results of short baseline ambiguity resolution and positioning based on Galileo IOV observations. The results demonstrate that integer ambiguity resolution based on the four IOV satellites needs fewer than three minutes when at least observables from three frequencies are used. Combined with data of four GPS satellites even instantaneous (single epoch) ambiguity resolution is demonstrated, using only two frequencies per constellation (i.e. E1+E5a & L1+L2). We also show that at locations with obstructed satellite visibility, such that positioning based on either GPS-only or Galileo-only becomes impossible or only in a very inaccurate way, combined Galileo&GPS positioning is feasible, within 10 min if one frequency of each constellation is used and only 2 min time-to-fix the ambiguities based on observations of two frequencies of each constellation. It is furthermore demonstrated that this results in positions with centimetre level accuracy in the horizontal plane and sub-decimetre accuracy in the vertical direction.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of ambiguity success rates based on multi-frequency GPS and Galileo
      Arora, Balwinder Singh (2012)
      The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
    • Integer ambiguity Resolution in Multi-constellation GNSS for LEO Satellites POD
      Wang, Kan; El-Mowafy, Ahmed ; Yang, Xuhai (2023)
      Precise Orbit Determination (POD) of Low Earth Orbit (LEO) satellites is essential for future LEO-augmented Positioning, Navigation and Timing (PNT) service based on the use of Global Navigation Satellite Systems (GNSS) ...
    • Instantaneous GPS-Galileo attitude determination: single-frequency performance
      Nadarajah, Nandakumaran; Teunissen, Peter; Raziq, N. (2013)
      New and modernized global navigation satellite systems (GNSSs) are paving the way for an increasing number of applications in positioning, navigation, and timing (PNT). A combined GNSS constellation will significantly ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.