A novel LaGa0.65Mg0.15Ni0.20O3–δ perovskite catalyst with high performance for the partial oxidation of methane to syngas
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A novel perovskite catalyst with the composition of LaGa0.65Mg0.15Ni0.20O3–δ (LGMN) is synthesized by the sol–gel combustion technique. The nanostructure catalyst has been examined for the partial oxidation of methane (POM) into syngas. A variety of characterizations including XRD, BET, SEM and TG–DTA were applied to determine the crystalline structure of the formed nanosized particles. The syngas selectivity over the catalyst may reach up to 100% with the methane conversions larger than 81% at 900 °C and 55 mL min−1 g−1 feed velocity. XRD and thermal analysis reveals that the LGMN powder has maintained the perovskite structure very well after 210 h POM reaction signaling its high chemical stability.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Wang, Y.; Chen, M.; Yang, Z.; Liang, T.; Liu, Shaomin; Zhou, Z.; Li, X. (2018)Monometallic Ni and bimetallic Ni-Co, Ni-Cu, and Ni-Zn catalysts supported on attapulgite (ATP) were prepared by chemical precipitation method and evaluated in the glycerol steam reforming (GSR) reaction under the following ...
-
Min, Zhenhua (2010)Biomass has become an increasingly important renewable source of energy forenhanced energy security and reduced CO[subscript]2 emissions. Gasification is at the core of many biomass utilisation technologies for such ...