Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A novel LaGa0.65Mg0.15Ni0.20O3–δ perovskite catalyst with high performance for the partial oxidation of methane to syngas

    Access Status
    Fulltext not available
    Authors
    Meng, B.
    Zhang, H.
    Zhao, Z.
    Wang, X.
    Jin, Y.
    Liu, Shaomin
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Meng, B. and Zhang, H. and Zhao, Z. and Wang, X. and Jin, Y. and Liu, S. 2014. A novel LaGa0.65Mg0.15Ni0.20O3–δ perovskite catalyst with high performance for the partial oxidation of methane to syngas. Catalysis Today. 259, Part 2: pp. 388-392.
    Source Title
    Catalysis Today
    DOI
    10.1016/j.cattod.2015.05.009
    ISSN
    0920-5861
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/46697
    Collection
    • Curtin Research Publications
    Abstract

    A novel perovskite catalyst with the composition of LaGa0.65Mg0.15Ni0.20O3–δ (LGMN) is synthesized by the sol–gel combustion technique. The nanostructure catalyst has been examined for the partial oxidation of methane (POM) into syngas. A variety of characterizations including XRD, BET, SEM and TG–DTA were applied to determine the crystalline structure of the formed nanosized particles. The syngas selectivity over the catalyst may reach up to 100% with the methane conversions larger than 81% at 900 °C and 55 mL min−1 g−1 feed velocity. XRD and thermal analysis reveals that the LGMN powder has maintained the perovskite structure very well after 210 h POM reaction signaling its high chemical stability.

    Related items

    Showing items related by title, author, creator and subject.

    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming
      Wang, Y.; Chen, M.; Yang, Z.; Liang, T.; Liu, Shaomin; Zhou, Z.; Li, X. (2018)
      Monometallic Ni and bimetallic Ni-Co, Ni-Cu, and Ni-Zn catalysts supported on attapulgite (ATP) were prepared by chemical precipitation method and evaluated in the glycerol steam reforming (GSR) reaction under the following ...
    • Catalytic steam reforming of biomass tar using iron catalysts
      Min, Zhenhua (2010)
      Biomass has become an increasingly important renewable source of energy forenhanced energy security and reduced CO[subscript]2 emissions. Gasification is at the core of many biomass utilisation technologies for such ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.