Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    SHRIMP U-Pb dating of high-grade migmatites and related magmatites from northwestern Oates Land (East Antarctica): evidence for a single high-grade event of Ross-Orogenic age

    Access Status
    Fulltext not available
    Authors
    Henjes-Kunst, F.
    Roland, N.
    Dunphy, J.
    Fletcher, Ian
    Date
    2004
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Henjes-Kunst, F. and Roland, N. and Dunphy, J. and Fletcher, I. 2004. SHRIMP U-Pb dating of high-grade migmatites and related magmatites from Northwestern Oates Land (East Antarctica): evidence for a single high-grade event of Ross-Orogenic age. Terra Antartica. 11 (1): pp. 67-84.
    Source Title
    Terra Antartica
    ISSN
    1122-8628
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/46787
    Collection
    • Curtin Research Publications
    Abstract

    High- to very-high-grade migmatitic basement rocks of the Wilson Hills area in northwestern Oates Land (Antarctica) form part of a low-pressure high-temperature belt located at the western inboard side of the Ross-orogenic Wilson Terrane. Zircon, and in part monazite, from four very-high grade migmatites (migmatitic gneisses to diatexites) and zircon from two undeformed granitic dykes from a central granulite-facies zone of the basement complex were dated by the SHRIMP U-Pb method in order to constrain the timing of metamorphic and related igneous processes and to identify possible age inheritance. Monazite from two migmatites yielded within error identical ages of 499 ± 10 Ma and 493 ± 9 Ma. Coexisting zircon gave ages of 500 ± 4 Ma and 484 ± 5 Ma for a metatexite (two age populations) and 475 ± 4 Ma for a diatexite. Zircon populations from a migmatitic gneiss and a posttectonic granitic dyke yielded well-defined ages of 488 ± 6 Ma and 482 ± 4 Ma, respectively. There is only minor evidence of age inheritance in zircons of these four samples. Zircon from two other samples (metatexite, posttectonic granitic dyke) gave scattered 206Pb-238U ages.While there is a component similar in age and in low Th/U ratio to those of the other samples, inherited components with ages up to c. 3 Ga predominate. In the metatexite, a major detrital contribution from 545 - 680 Ma old source rocks can be identified. The new age data support the model that granulite- to high-amphibolite-facies metamorphism and related igneous processes in basement rocks of northwestern Oates Land were confined to a relatively short period of time of Late Cambrian to early Ordovican age. An age of approximately 500 Ma is estimated for the Ross-orogenic granulite-facies metamorphism from consistent ages of monazite from two migmatites and of the older zircon age population in one metatexite. The variably younger zircon ages are interpreted to reflect mineral formation in the course of the post-granulite-facies metamorphic evolution, which led to a widespread high-amphibolite-facies retrogression and in part late-stage formation of ms+bi assemblages in the basement rocks and which lasted until about 465 Ma. The presence of inherited zircon components of latest Neoproterozoic to Cambrian age indicates that the high- to very-grade migmatitic basement in northwestern Oates Land originated from clastic series of Cambrian age and, therefore, may well represent the deeper-crustal equivalent of lower-grade metasedimentary series of the Wilson Terrane.

    Related items

    Showing items related by title, author, creator and subject.

    • The Proterozoic geological history of the Irumide belt, Zambia
      De Waele, Bert (2004)
      The Irumide belt is an elongate crustal province characterised by Mesoproterozoic tectonism and magmatism that stretches over a distance of approximately 900 kilometers from central Zambia to the Zambia-Tanzania border ...
    • Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U–Pb age and Nd model age data
      Shiraishi, K.; Dunkley, Daniel; Hokada, T.; Fanning, M.; Kagami, H.; Hamamoto, T. (2008)
      In eastern Dronning Maud Land (DML), East Antarctica, there are several discrete, isolated magmatic and high-grade metamorphic regions. These are, from west (c. 20degE) to east (c. 50degE), the Sør Rondane Mountains (SRM), ...
    • Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: an Example from the Central Indian Tectonic Zone
      Bhowmik, S.; Wilde, Simon; Bhandari, A.; Sarbadhikari, A.B. (2014)
      The growth and dissolution behaviour of detrital, metamorphic and magmatic monazite and zircon during granulite-facies anatexis in pelitic and psammo-pelitic granulites and in garnetiferous granite from the southern margin ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.