Show simple item record

dc.contributor.authorLi, S.
dc.contributor.authorSun, X.
dc.contributor.authorLiu, H.
dc.contributor.authorYao, S.
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T15:29:25Z
dc.date.available2017-01-30T15:29:25Z
dc.date.created2012-03-26T20:01:28Z
dc.date.issued2011
dc.identifier.citationLi, S.J. and Sun, X.K. and Liu, H.M. and Yao, S.F. and Teo, K.L. 2011. Conjugate Duality in Constrained Set-Valued Vector Optimization Problems. Numerical Functional Analysis and Optimization. 32 (1): pp. 65-82.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/46824
dc.identifier.doi10.1080/01630563.2010.528567
dc.description.abstract

In this article, under a concept of supremum/infimum of a set, defined in terms of a closure of the set, three kinds of conjugate dual problems are proposed for a constrained set-valued vector optimization problem. Weak duality, strong duality, and stability criteria are investigated. The inclusion relations between the image sets of the dual problems are also discussed.

dc.publisherTaylor & Francis Group
dc.titleConjugate Duality in Constrained Set-Valued Vector Optimization Problems
dc.typeJournal Article
dcterms.source.volume32
dcterms.source.startPage65
dcterms.source.endPage82
dcterms.source.issn01630563
dcterms.source.titleNumerical Functional Analysis and Optimization
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record