Structural Response under Blast Loads - Simplified Numerical Analysis no match
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Efficiently and accurately predicting structural dynamic response and damage to external blast loading is a big challenge to both structural engineers and researchers. Theoretical investigation on this problem is complex as it involves non-linear inelastic material properties, effect of time varying strain rates, uncertainties of blast load calculations and the time-dependent structural deformations. Experimental investigation can provide valuable data for locating the damage and establishing the damage criteria. The damage curves generated from the extensive experimental study can provide quick assessment of the structural status. However, such blast experiments always involve safety concern and can be beyond the affordability. Besides this, the correlation of the experimental data with predictive method is difficult since it requires a large number of tests to generate damage curves. Compared with the theoretical and experimental study, numerical simulation does not involve any safety concern and is cost-effective. With verified material model and element model, numerical simulation could be powerful supplement to the experimental tests. However, numerical simulation of structural responses under blast and impact loading could be time and resource consuming. Even with modern computer technology and computational mechanics method, detailed modelling and numerical simulation of responses of structures subjected to blast loadings are still often prohibitive. To address this issue, in the present study, an efficient numerical method is proposed to reliably calculate structural response and damage to blast loadings.
Related items
Showing items related by title, author, creator and subject.
-
Hao, Hong; Mutalib, A. (2011)Intensive research efforts have been spent on investigating the effectiveness of using FRP strengthening to increase the blast load-carrying capacities of RC structures. Most of these studies are experimental-based. It ...
-
Tang, E.; Hao, Hong (2010)Many researchers have conducted comprehensive experimental and numerical investigations to examine civilian structures' response to explosive loads. Most of the studies reported in the literature deal with building ...
-
Yuan, S.; Hao, Hong; Zong, Z.; Li, Jun (2017)© 2017 This paper presents a study on reinforced concrete (RC) bridge columns under contact detonation. Two 1/3 scale RC bridge columns with circular and square cross-sections are studied both experimentally and numerically. ...