Show simple item record

dc.contributor.authorCuoghi, S.
dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.editorRobert Mahony
dc.contributor.editorHemanshu Pota
dc.contributor.editorValeri Ougrinovski
dc.date.accessioned2017-01-30T15:30:04Z
dc.date.available2017-01-30T15:30:04Z
dc.date.created2015-05-22T08:32:22Z
dc.date.issued2014
dc.identifier.citationCuoghi, S. and Ntogramatzidis, L. 2014. Inversion formulae for the design of PIDF controllers, in R. Mahony, H. Pota, V. Ougrinovski (ed), Australian Control Conference, Nov 17-18 2014, pp. 140-145. Canberra, Australia: Engineers Australia.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/46937
dc.description.abstract

This paper introduces a set of closed-form formulae for the design of PIDF (i.e., PID + filter) controllers to exactly satisfy steady state requirements and standard frequency-domain specifications on the stability margins (i.e., phase and gain margins) and the gain crossover frequency. This design methodology is an extension of the so called Inversion Formulae method for the design of classical Lead, Lag, Notch and PI/PD/PID controllers. PIDF controllers are useful because, differently from standard PID controllers, they are described by a proper transfer function. In this paper we also show that the further degree of freedom introduced in the transfer function of the PIDF controller can be exploited to satisfy further specifications, compared to the classic PID controller.

dc.publisherEngineers Australia
dc.titleInversion formulae for the design of PIDF controllers
dc.typeConference Paper
dcterms.source.startPage140
dcterms.source.endPage145
dcterms.source.titleProceedings of the 4th Australian Control Conference (AUCC)
dcterms.source.seriesProceedings of the 4th Australian Control Conference (AUCC)
dcterms.source.isbn978-1-922107-39-8
dcterms.source.conference2014 Australian Control Conference
dcterms.source.conference-start-dateNov 17 2014
dcterms.source.conferencelocationCanberra, Australia
dcterms.source.placeMelbourne, Australia
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record