Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Biomass pyrolysis - A review of modelling, process parameters and catalytic studies

    Access Status
    Fulltext not available
    Authors
    Sharma, Abhishek
    Pareek, Vishnu
    Zhang, D.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sharma, A. and Pareek, V. and Zhang, D. 2015. Biomass pyrolysis - A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews. 50: pp. 1081-1096.
    Source Title
    Renewable and Sustainable Energy Reviews
    DOI
    10.1016/j.rser.2015.04.193
    ISSN
    1364-0321
    School
    School of Chemical and Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/4698
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 Elsevier Ltd. All rights reserved. Biomass as a form of energy source may be utilized in two different ways: directly by burning the biomass and indirectly by converting it into solid, liquid or gaseous fuels. Pyrolysis is an indirect conversion method, and can be described in simpler terms as a thermal decomposition of biomass under oxygen-depleted conditions to an array of solid, liquid and gaseous products, namely biochar, bio-oil and fuel gas. However, pyrolysis of biomass is a complex chemical process with several operational and environmental challenges. Consequently, this process has been widely investigated in order to understand the mechanisms and kinetics of pyrolysis at different scales, viz. particle level, multi-phase reacting flow, product distribution and reactor performance, process integration and control. However, there are a number of uncertainties in current biomass pyrolysis models, especially in their ability to optimize process conditions to achieve desired product yields and distribution. The present contribution provides a critical review of the current status of mathematical modelling studies of biomass pyrolysis with the aim to identify knowledge gaps for further research and opportunities for integration of biomass pyrolysis models of disparate scales. Models for the hydrodynamic behaviour of particles in pyrolysis, and their interaction with the reactive flow and the effect on the performance of the reactors have also been critically analyzed. From this analysis it becomes apparent that feedstock characteristics, evolving physical and chemical properties of biomass particles and residence times of both solid and gas phases in reactors hold the key to the desired performance of the pyrolysis process. Finally, the importance of catalytic effects in pyrolysis has also been critically analyzed, resulting in recommendations for further research in this area especially on selection of catalysts for optimal product yields under varying operating conditions.

    Related items

    Showing items related by title, author, creator and subject.

    • High energy density fuels derived from mallee biomass: fuel properties and implications
      Abdullah, Hanisom binti (2010)
      Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Debottlenecking biomass supply chain resources deficiency via element targeting approach
      Lim, C.; How, B.; Ng, Wendy; Leong, W.; Ngan, S.; Lam, H. (2018)
      Copyright © 2018, AIDIC Servizi S.r.l. Biomass has been one of the focus in research and development of renewable resources for energy, chemicals and downstream products. Despite many success of biomass conversion ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.