Channel estimation based on compressed sensing in high-speed underwater acoustic communication
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Remarks
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
The underwater acoustic (UA) channel is dispersive in both time and frequency with severe frequency-dependent signal attenuation. Efficient channel estimation and tracking are crucial to coherent high-rate UA communication. In this paper, we propose a new compressed sensing (CS) based channel estimation method with block-by-block channel tracking for UA communication. Compared with conventional channel estimation algorithms, the proposed method efficiently exploits the sparsity of the UA channel, and improves the channel tracking capability of UA communication system. The proposed algorithm was tested during our UA communication experiment conducted in December 2012 in the Indian Ocean off Rottnest Island, Western Australia. At a data rate of 8 kbps (QPSK constellations), average uncoded bit-error-rates (BERs) of 3% and 14% have been achieved over 1 km and 6 km ranges, respectively, using MMSE equalization based on the proposed channel estimation and tracking method.
Related items
Showing items related by title, author, creator and subject.
-
Abd El-Sallam, Amar (2005)New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these ...
-
Wang, S.; He, Z.; Niu, K.; Chen, Jaden ; Rong, Yue (2020)Impulsive noise can greatly affect the performance of underwater acoustic (UA) orthogonal frequency-division multiplexing (OFDM) systems. In this paper, by utilizing the sparsity of the UA channel impulse response and ...
-
Chiong, Choo Wee Raymond; Rong, Yue; Xiang, Y. (2015)In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described ...