Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Interpreting U–Pb data from primary and secondary features in lunar zircon

    189457_189457.pdf (3.602Mb)
    Access Status
    Open access
    Authors
    Grange, Marion
    Pidgeon, Robert
    Nemchin, Alexander
    Timms, Nicholas Eric
    Meyer, C.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Grange, M.L. and Pidgeon, R.T. and Nemchin, A.A. and Timms, N.E. and Meyer, C. 2013. Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochimica et Cosmochimica Acta. 101: pp. 112-132.
    Source Title
    Geochimica Et Cosmochimica Acta
    DOI
    10.1016/j.gca.2012.10.013
    ISSN
    00167037
    URI
    http://hdl.handle.net/20.500.11937/47006
    Collection
    • Curtin Research Publications
    Abstract

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U–Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th–U–Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal–plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U–Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal–plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U–Pb isotopic systems.

    Related items

    Showing items related by title, author, creator and subject.

    • Terrestrial-like zircon in a clast from an Apollo 14 breccia
      Bellucci, J.; Nemchin, Alexander; Grange, M.; Robinson, K.; Collins, G.; Whitehouse, M.; Snape, J.; Norman, M.; Kring, D. (2019)
      A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and ...
    • Resolution of impact-related microstructures in lunar zircon: A shock-deformation mechanism map
      Timms, Nicholas Eric; Reddy, Steven; Healy, David; Nemchin, Alexander; Grange, Marion; Pidgeon, Robert; Hart, Robert (2012)
      The microstructures of lunar zircon grains from breccia samples 72215, 73215, 73235, and 76295 collected during the Apollo 17 mission have been characterized via optical microscopy, cathodoluminescence imaging, and electron ...
    • A terrestrial perspective on using ex situ shocked zircons to date lunar impacts
      Cavosie, Aaron; Erickson, Timmons; Timms, Nicholas Eric; Reddy, Steven; Talavera, Cristina; Montalvo, S.; Pincus, M.; Gibbon, R.; Moser, D. (2015)
      Deformed lunar zircons yielding U-Pb ages from 4333 Ma to 1407 Ma have been interpreted as dating discrete impacts on the Moon. However, the cause of age resetting in lunar zircons is equivocal; as ex situ grains in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.