Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions

    247806.pdf (1.591Mb)
    Access Status
    Open access
    Authors
    Roelofs, B.
    Barham, M.
    Cliff, J.
    Joachimski, M.
    Martin, L.
    Trinajstic, Katherine
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Roelofs, B. and Barham, M. and Cliff, J. and Joachimski, M. and Martin, L. and Trinajstic, K. 2017. Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology. 465: pp. 79-92.
    Source Title
    Palaeogeography, Palaeoclimatology, Palaeoecology
    DOI
    10.1016/j.palaeo.2016.10.018
    ISSN
    0031-0182
    School
    Department of Environment and Agriculture
    URI
    http://hdl.handle.net/20.500.11937/47014
    Collection
    • Curtin Research Publications
    Abstract

    Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating ocean temperature and palaeoclimate changes in the Palaeozoic. Despite the growing application in geochemically-based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies necessitates greater flexibility in selection of robust oxygen-bearing compounds for analysis. Vertebrate microfossils (teeth, dermal denticles, spines) offer a potential substitute for conodonts from the middle Palaeozoic. Vertebrate bioapatite is particularly advantageous given a fossil record extending to the present with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope studies on bioapatite. However, significant tissue heterogeneity within vertebrates and differential susceptibility of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the oxygen isotope ratios as palaeoclimatic proxies. Well-preserved vertebrate microfossils and co-occurring conodont fossils from the Upper Devonian and Lower Carboniferous of the Lennard Shelf, Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass spectrometry, GIRMS) and in-situ (secondary ion mass spectrometry, SIMS) methodologies, with the latter technique allowing investigation of specific tissues within vertebrate elements. The d18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally sensible palaeo-salinity and -temperature and provide a baseline standard for comparison against vertebrate microfossil d18O values. Despite an absence of obvious diagenetic modification, GIRMS of vertebrate denticles yielded d18O values depleted in 18O by 2–4‰ relative to co-occurring conodonts. SIMS analysis of dentine tissues exhibited significant heterogeneity, while hypermineralised tissues in both scales and teeth produced d18O values comparable with those of associated conodonts. The susceptibility of permeable phosphatic fossil tissues to microbial activity, fluid interaction and introduction of mineral precipitates post-formation is demonstrated in the dentine of vertebrate microfossils, which showed significant heterogeneity and consistent depletion in 18O relative to conodonts. The hypermineralised tissues present in both teeth and scales appear resistant to many diagenetic processes and indicate potential for palaeoclimatic reconstructions and palaeoecological investigations.

    Related items

    Showing items related by title, author, creator and subject.

    • Diagenetic alteration of the structure and δ18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation
      Barham, Milo; Joachimski, M.; Murray, J.; Williams, D. (2012)
      The oxygen isotopic compositions of Carboniferous conodonts and fish microfossils (ichthyoliths), from identical samples, were analysed in tandem in order to test whether these phosphatic media can be reliably used for ...
    • Comprehending conodonts
      Barham, Milo (2015)
      Conodonts were small, thin, elongate jawless creatures that were a common component of the marine fauna from the late Cambrian, throughout the Palaeozoic and into the Triassic. For the majority of conodont research history, ...
    • Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions
      Ayupova, N.; Maslennikov, V.; Tessalina, Svetlana; Shilovsky, O.; Sadykov, S.; Hollis, S.; Danyushevsky, L.; Safina, N.; Statsenko, E. (2017)
      The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.