Mannosylation of mutated MBP83-99 peptides diverts immune responses from Th1 to Th2
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease mediated primarily by CD4+ T cells. The design of peptide mutants of disease-associated myelin epitopes to alter immune responses offers a promising avenue for the treatment of MS. We designed and synthesized a number of peptide analogs by mutating the principal TCR contact residue based on MBP83-99 epitope and these peptides were conjugated to reduced mannan. Immune responses were diverted from Th1 to Th2 in SJL/J mice and generated antibodies which did not cross-react with native MBP protein. Peptide [Y91]MBP83-99 gave the best cytokine and antibody profile and constitutes a promising candidate peptide for immunotherapy of MS. Structural alignment of existing crystal structures revealed the peptide binding motif of I-As. Molecular modeling was used to identify H-bonding and van der Waals interactions between peptides and MHC (I-As). © 2008 Elsevier Ltd. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Namjoshi, Sarika M (2009)Recent developments in genetic engineering and biotechnology have resulted in anincrease in availability of therapeutic peptides and small anti-cytokines. Oraladministration is inappropriate as these molecules are unstable ...
-
Lazoura, E.; Lodding, J.; Farrugia, W.; Day, S.; Ramsland, Paul; Apostolopoulos, V. (2009)The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which ...
-
Katsara, M.; Yuriev, E.; Ramsland, Paul; Tselios, T.; Deraos, G.; Lourbopoulos, A.; Grigoriadis, N.; Matsoukas, J.; Apostolopoulos, V. (2009)Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as ...