Interactive flow behaviour and heat transfer enhancement in a microchannel with cross flow synthetic jet
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper examines the effectiveness in combining a pulsating fluid jet for thermal enhancement in microchannel heat sinks. The proposed arrangement utilises an oscillating diaphragm to induce a high-frequency periodic fluid jet with zero net mass output at the jet orifice hence, termed "synthetic jet". The pulsed jet interacts with the fluid flow through microchannel passages altering their flow characteristics. The present study develops a 2-dimensional finite volume numerical simulation based on unsteady Reynolds-averaged Navier-Stokes equations for examining the microchannel-synthetic jet flow interaction. For a range of parametric conditions, the behaviour of this periodic flow with its special features is identified and the associated convective heat transfer rates are predicted. The results indicate that the pulsating jet leads to outstanding thermal performance in microchannel flow increasing its heat dissipation rate by about 4.3 times compared to a microchannel without jet interaction within the tested parametric range. The degree of thermal enhancement is seen to grow continuously to reach a steady value in the absence of fluid compressibility. The proposed strategy has an intrinsic ability for outstanding thermal characteristics without causing pressure drop increases in microchannel fluid passages, which is identified as a unique feature of the technique.The study also examines and presents the effects of fluid compressibility on the heat removal capacity of this arrangement. The technique is envisaged to have application potential in miniature electronic devices where localised cooling is desired over a base heat dissipation load.
Related items
Showing items related by title, author, creator and subject.
-
Chandratilleke, Tilak; Jagannatha, Deepak; Narayanaswamy, Ramesh (2010)This paper examines the effectiveness of using a pulsating cross-flow fluid jet for thermal enhancement in a microchannel. The proposed technique uses a novel flow pulsing mechanism termed “synthetic jet” that injects ...
-
Jagannatha, Deepak (2009)This thesis presents a fundamental research investigation that examines the thermal and fluid flow behaviour of a special pulsating fluid jet mechanism called synthetic jet. It is envisaged that this novel heat transfer ...
-
Foong, Andrew Jun Li (2009)Electronic components generate large amount of heat during their operation, which requires to be dissipated. Over the past decade, internal heat generation levels have exponentially increased due to the compact packaging ...